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Presented is a simplified model of jet formation of 
shaped charges with hemispherical liners. First, the 
shape and velocity of the jet are expressed as functions 
of the liner's total momentum and kinetic energy. Then, 
a formula is proposed for the liner's collapse velocity, 
based on a combination of the Gurney formulas for plate 
acceleration and cylindrical implosion. This velocity is 
integrated over the liner to yield its total momentum and 
energy, and hence determine the properties of the result­
ing jet. 

INTRODUCTION 

This paper presents a simple 
model of the jet-formation process 
in shaped charges with hemispheri­
cal liners. It is a continuation 
of the work reported in [1], (2] 
and (3]. In (1], an implosively 
loaded hemispherical liner was 
simulated by the two-dimensional 
computer code HELP, and the results 
were compared with those of the 
implosively loaded case. It was 
shown that the formation of jets 
from the three types of liners, 
namely, implosively loaded hemi­
sphere, point-initiated hemisphere, 
and cones, are all different. In 
(1] and (2], liner material flow 
was analyzed in detail, but speci­
fic models, from which quantitative 
calculation and prediction can be 
made, were not offered. 

Physical models with simple 
equations are needed. ~en though 
computer codes yield detailed in­
formation, they are time-consuming, 
and their results are difficult to 
analyze. Physical models affer 
more insight into formation mechan­
isms, and are easy to use. For 
conical shaped charges, the well­
known P-E-R model (5] gives an 
accurate picture of the formation 
mechanism and has been used widely. 

Few models for hemispherical 
liners have been offered in the 
past. Reference (6] gave a simple 
jet-formation model based on the 

assumption that a liner element (of 
a circular ring shape) forms a 
single solid cylindrical jet element 
of constant velocity (see Figure 6 
of [6]). An element through the 
liner thickness at the hemisphere's 
apex forms the jet tip, and the tip 
v eloci ty is calcula ted from this 
element alone, without interaction 
with other liner elements. It is 
clear from the computer-code simula­
tions of (1] and [2] that their 
assumptions are overly simplified. 

In this paper, a simplified 
model of jet formation for hemi­
spherical shaped charges is present­
ed. This model has two main parts. 
In the first part, jet tip and tail 
velocities are expressed as explicit 
functions of total liner momentum 
and kinetic energy. In .the second 
part, a formula for the liner coll­
apse velocity is proposed, which can 
be used to de termine the liner's·· 
momentum and energy. 

We first present the develop­
ment of these two parts of the 
theory. Results of the model are 
then compared with code simulations 
and experiments. Finally, parame~ 
tric calculations with the model 
show that it correctly predicts 
trends due to variations in liner 
thickness and liner tapering. 
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THEORY 

Observation of radiographs show 
shows that the radius and velocity 
of jets from hemispherical liners 



usually both have linear variations 
along the length. For simplicity, 
the jet is assumed to have the 
shape of a truncated cone and a 
linear distribution of velocity 
along its length as shown in Figure 
1. The accuracy of this assumption 
is demonstrated in Figure 2, which 
presents a grid plot from a DEFEL 
simulation of a hemispherical 
shaped charge. The linearity of 
the jet velocity was more fully 
demonstrated in [3], and the line­
arity of the radius is discussed in 
[2]. 

Jet Position 

V 
m 

Figure 1. Linear Distributions of Jet 
Radius and Velocity, as 
Assumed in the Model. 

The jet can then be completely 
described by specifying four pro­
perties: the velocities and radii 
of its tip and tail. These proper­
ties can be determined by four input 
quantities. Three of the inputs 
could be the total mass, axial 
momentum, and kinetic energy of the 
collapsing liner. Under these 
conditions, the mass, axial momen­
tum, and kinetic energy of the jet 
may be expressed as: 

M = t P1fR,rn 2 (p2 + P + 1) (1) 

E = ~1fR,rn2 [(6p2 + 3p + 1)Vm2 

+ (3p2 + 4p + 3)VmVn 

+ (p2 + 3p + 6)Vn2] 

where 

p = Em 
rn 

and 

R, = jet length 
rm = tip radius 
rn = tail radius 
Vm tip veloci ty 
Vn tail veloci ty 

(3) 
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Figure 2. Finite-element Grid of Jet Projected by the Charge Shown, 
as Calculated by the DEFEL Code. 
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If the mass, momentum, and 
energy of a collapsing liner are 
given, then the above equations are 
insufficient to determine all four 
variables that describe the jet's 
velocity distribution and shape. 
However, if the ratio of the tip and 
tail radii is known, these three 
equations may be inverted to give 
expressions of the velocities and 
radii in terms of the mass, momen­
tum, and energy. Thus, the above 
equations may be rearranged to 
yield: 

~ = (1PJ. + £.3!L) + p3 A (4) 
VCG 3P2 2P2Kl p2 

.Y.tL = - !L - A (5) 
VCG 2Kl 

3M 1 =--
pIT PI 

(6) 

in which 

- [K22_4KIK3 + 2£l ( E 2)]1/2 
A - 4K12 3Kl 1/2 MVCG 

PI p2 + p + 1 

P2 

P3 

P4 

P5 

P6 

Kl 

p2 P 1 =-+-+-236 

p2 P 1 =-+-+-6 3 2 

. 1 
p2 +! + 6" 

p2 2p 1 
=-+-+-232 

2 
=L+£'+ 1 6 2 

= llii + P6 p2 
+ p32p4 --pzr 

4PIP1P4 + 2 El£2 
3P2 '! P2 

K3 = 4P4P!2 
9P2 

and VCG = P/M is velocity 
center of mass of the jet. 

of the 
Given 

the jet mass M, axial momentum P, 
kinetic energy E, and radius p, the 
jet's tip and tail veloci ties and 
radii may be computed from these 
equations. 

Note that the expressions for 
jet velocity, Equations (4) and 
(5), depend on the jet radii only 
through their ratio, p = rm/rn. 
That is, the velocities are inde­
penden t of the scale of the jet, as 
expected. If we assume a value for 
the radius ratio p, then the tip 
and tail velocities of all possible' 
jets may be given by a single 
curve. 

Such a plot is given in Figure 
3 for a value of p = 0.25. Obser­
vation of jet radiographs and the 
results of hydrocode simulations 
indicates that this value is a good 
approximation. Ratios of the tip 
and tail velocities to the average 
velocity are pl~tted versus the 
energy ratio E/~CG2. The value 
of the energy ratio reflects the 
rate of jet stretching. For an 
energy ratio equal to unity, Vm = 
Vn = VCG' and there is no stretch­
ing at all. For a given VCG, 
greater energy indicates a larger 
difference between Vm and Vn , and a 
higher stretching rate. For a 42° 
conical charge, VCG is high (5.24 
km/s); therefore, the actual 
stretching is high, even though the 
energy ratio is small. 
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Included in Figure 3 are a 
number of points corresponding to 
jet velocity data predicted by 
DEFEL. These data are also listed 
in Table 1. Note that these points 
are quite close to the curves. 
Also included are data points from 
tests of a 42° conical copper 
shaped charge and a copper self­
forging-fragment (SFF) charge. The 
SFF data fall appreciably inside 
the curves, probably because the 
radius ratio was actually somewhat 
grea ter than 0.25. 

made 
code 
well. 

Several observations can be 
in this figure. First, the 
data fit the curves quite 

This indicates that the 
assumptions made as to the charac­
ter of the jet (linear velocity 
distribution, truncated conical 
shape, ratio of tip to tail radius) 
are acceptable, and that mass, 
momentum, and kinetic energy are 
indeed constant. 

Second, some predicted reia­
tionships among jet characteristics 
may be clearly seen from these 
curves. For a given average jet 
velocity VCG, the tip velocity 
increases and the tail veloci ty 
decreases with kinetic energy; that 
is, stretching rate increases with 
kinetic energy. 

For a warhead of given size, 
however, experience has shown that 
the available energy is practically 
constant. (In fact, code simula­
tions have shown that shaped char­
ges, hemi charges, and self-forging­
fragments of the same, diameter 
project jets with kinetic energies 
within 20% of one another.) In 

Figure 4, we see that, for jets of 
equal energy, tip velocity decreases 
and tail velocity increases with 
average jet velocity. This may be 
explained by considering that the 
jet kine tic energy may be div ided 
into two parts, one associated with 
the average velocity and the other, 
the stretching component. 

E = ~ jV2 dm = ~ jVCG2 dm 

+ t j(V2 - VCG2) dm (7) 

'.0 

,....... 
CIl 

5.0 0.8 MJ/ ---] 
'-" 

.--I 4.0 
0.6 MJ/ 

'M 
(1j 

E-4 TiP 
'"Ci 3.0 I:l 
(1j 

P. 
'M 
E-4 2.0 

.w 
OJ 

t-:> 
1.0 

4-4 
0 

P-. 
.w 

0.0 'M 
() 

0 
.--I 

OJ 
TAIL l> -1.0 

0.0 .2 .4 .6 .8 1.0 1.2 

Forward Momentum (kN-s) 

Figure 4. Jet Tip and Tail Velocities 
as a Function of Total For­
ward Momentum for Several 
Values of Jet Kinetic Energy 
as Predicted by the Model. 

Table 1. Data from Hydrocode Simulations of Hemispherical Charges 

Charge Liner Thic1::ness i:inetic Forward 
Design Diam. ---------------- Energy Momentum Mass 

No. (mm) Pole (mm) Rim (MJ) (1:N-s) (1::g) 

L1-A 127 3.3 .., .., 
'-' . ..., 0.783 0.643 0.435 

Ll-8'" 127 .., .., 
'J. '.,j 3.3 0.873 0.694 0.435 

L2-A 127 3.3 1.65 0.861 0.613 o ":r""-:' .\wJ,t..v 

L2-8* 127 3.3 1. 65 0.951 0.660 0.323 
LD-1 95 2.09 2.'09 0.895 0.499 0.178 
LD-2 95 2.375 1.425 0.940 0.478 0.159 
LO-3 95 2.85 1.425 0.871 0.453 0.169 
LO-4 95 3.8 1.9 0.805 0.483 0.212 
LD-5 95 2.375 1.1875 0.910 0.439 0.154 

"'with wave-shaner 
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Velocity (1::m/s) 

Tip Tail C.G. 

4.86 0.00 1. 47 
5.11 0.20 1. 59 
5.18 0.00 1. 89 
5.45 0.20 2.04 
6.60 0.60 2.79 
7.20 0.65 3.00 
7.00 0.61 2.68 
6.60 0.64 2.27 
7.62 0.61 2.86 



When the average velocity is increa­
sed, the first term becomes larger. 
If the total energy is constant, the 
stretching component must then 
decrease. 

For hemispherical liners, 
hydrocode simulations indicate that 
all the liner mass goes into the 
jet. If the mass of the jet is 
fixed, and the total kinetic energy 
is fixed, then the model shows 
larger total forward momentum, and 
smaller tip speed, as shown in 
Figure 4. 

The forward momentum is depen­
dent on the liner slope. At one end 
of the spectrum, the liner is close 
to a disc, like an SFF liner; all 
the energy serves to drive the liner 
forward. As a result, the forward 
momentum is large, but the differ­
ence between jet tip and tail speeds 
is small, and tip speed is low. The 
other extreme is a small-angle 
conical liner (shaped charge), where 
initially most of the liner energy 
is in the form of inward radial 
velocity, and later splits into a 
fast-moving jet tip, and slow­
moving jet tail or slug. The net 
forward momentum is small. In other 
words, for fixed total jet mass and 
kinetic energy, the high tip speed 
is achieved by driving the liner 
more inward radially, the high-speed 
portion of the jet has less mass, 
and the total forward momentum is 
small. 

This model is primarily for 
nearly hemispherical liners, but it 
is also applicable to SEFs. For a 
non-stretching SFF projectile, with 
no velocity gradient, the forward 
momentum is a maximum, as shown in 
Figure 4 as the extreme right point 
on each constant-energy curve. 

When applying this model to 
conventional shaped charges with 
narrow angle cones, there are two 
ways of accounting for the mass. 
The total liner mass could be consi­
dered, which means that the jet tail 
is actually the "slug" tail, accord­
ing to the accepted theory and 
terminology of [5]. Alternatively, 
only the mass of the jet may be 
considered, excluding the mass of 
the slug. 
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FORMULAS FOR LINER COLLAPSE 

Equations (4) to (6) can be 
used to predict jet-velocity and 
radius distributions if the jet's 
total mass, momentum, and energy are 
kno~. These quantities are assumed 
the same as for the collapsing 
liner. In this section, formulas 
for the velocity of each point of 
the liner are presented. The total 
momentum and energy will then be 
obtained by integration. 

The nature of the explosive 
acceleration of a hemispherical 
liner varies along the liner's 
contour. Near the liner axis, the 
problem is similar to the accelera­
tion of a metal plate by a layer of 
explosive. But near the rim, the 
situation is closer to the explosive 
collapse of a cylindrical shell. To 
predict the velocity of the collap­
sing hemi liner, then, we shall 
combine the Gurney formulas for 
these two problems. 

If we denote by Vp the compo­
nent of liner velocity due to plate 
acceleration, and by Vc the compo­
nent due to cylindrical implosion, 
then the total veloci ty may be given 
by: 

where f and g are functions of the 
liner polar coordinate~. The total 
velocity includes only the plate 
component at the pole, f(OO) = 1, 
g(OO) = 0, while at the rim, only 
the cylindrical component, f(900) = 
0, g(900) =1. Also, over the 
entire liner, we require that f(~) + 
g(~) = 1. Several sets of functions 
satisfying these requirements have 
been considered here, the most 
successful of which is 

f(~) = 1 - sin ~ 

g(~) = sin ¢ 
(9) 

The velocity components Vp and 
Vc are obtained from the appropriate 
Gurney formulas. The classical 
formula for a plate is: 



(1 + 2 ~)3 + 1 (10) 
Vp = 12E [ ___ C;;.j,g~ __ + ~]-1/2 

6(1 + ~ ) Cp 

P 

where E is the Gurney energy, M is 
the liner mass, and Cp is the explo­
sive mass associated with the plate 
formula, defined as a cylindrical 
tube projected axially from the 
liner element, as in Figure 5. 

The other velocity component is 
given by the cylindrical implosion 
formula derived by Chanteret [7]: 

where Ri and Re are the interior and 
exterior radii of the explosive, and 
Cc is the mass of the explosive 
associated with the cylindrical 
implosion formula, defined in Figure 

c 
p 

Figure 5. Definition of Metal and Explo-
sive Masses Used in Gurney 
Formulas. 

5. Rx is the radius of an assumed 
rigid surface within the/explosive, 
given by: 

~ (~+ ~)] = 0 
PCJ Cc Cc 

(12) 

This equation may be solved analyt­
ically for Rx. Mt is the mass of 
the confinement (tamping), defined 
in Figure 5, and Po and PCJ are the 
initial and Chapman-Jouguet densi­
ties of the explosive. 

The above equations give the 
magnitude of the velocity, but not 
its direction. The angle 0 of the 
velocity with respect to the origi­
nal normal to the liner is given by 
the unsteady Taylor relation [8J: 

Vn 1 V' 1 V ' o = 2U - 2 0' - 4 0' (13) 

where, is the characteristic 
acceleration time of the liner and 
the primes denote differentiation 
along the meridian of the liner. 
Here, we take , to be a cons tan t, 
so that the last term vanishes. u 
is the sweeping velocity of the 
detonation wave over the liner: 

u=~ 
cos y 

(14) 

in which UD is the explosive deto­
nation velocity and y is the angle 
between the detonation wavefront 
and the tangent to the liner. 

Once the velocity and direc­
tion of collapse are known all 
along the liner, its mass, momen­
tum, and energy may be found by 
evaluating the integrals: 

~max 
M = fo 21TpRR, t sin ~ d~ (15) 

~max 
(16) 

P = f 21TpRR, t Vo sin~ cos(~-o )d~ 
0 

E = f~max 21TpRR, t sin 
Vg2 

~ 2 d~ (17) 

The mass can be integrated exactly, 
but the momentum and energy must, 
in general, be integrated numeric­
ally. These quantities may then be 
substituted into Equations (4) to 
(6) to determine the properties of 
the jet. 

COMPARISON WITH HYDRO CODE 
CALCULATIONS & EXPERIMENT 

As a test of the simplified 
model, calculated results are com­
pared with other results for actual 
hemi charges. Table 2 lists tip 
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Table 2. Comparison of Model with Hydrocode Calculations and Experiments 

Liner Tip Velocity EineticEnergy Momentum 
Thickness Confine- ---------(km/sl-------- -----(MJ)----- ---(kN-s)-----

(% C.D.) ment HELP Exp. DEFEL Model DEFEL Model DEFEL Model 
------------------------------------------------------------------------

3.3 none 4.29 NA NA 4.15 NA 0.528 NA 0.505 
3.3 3.2mm Al 4.39 4.43 4.42 4.41 0.596 0.603 0.572 0.545 
3.3 6.4mm St 5.21 4.96 NA 5.00 NA 0.789 NA 0.632 

3.0-1.5 3.2mm Al 4.85 4.94 4.64 5.10 0.603 0.607 0.520 0.482 
3.0-1.5 6.4mm St 5.95 6.28 NA 5.76 NA 0.781 NA 0.550 
----------------------~-------------------------------------------------

velocities for five different charge 
designs, as simulated by HELP and 
DEFEL codes, as measured in experi­
ments, and as calculated from the 
simplified model. The HELP code and 
experimental data are from BRL [9, 
10], and the DEFEL simulations were 
performed by Dyna East [2, 3]. 
These charges are All similar to 
that shown in Figure 2, except for 
liner tapering and confinement. 
Included are an unconfined charge 
with the uniform-wall liner and 6.4-
mm-thick-steel-confined charges with 
the tapered and uniform-wall liners. 

The simplified model was first 
calibrated by adjusting the collapse 
formulas, Equations (8) and (13), so 
that the jet kinetic energy (taken 
as 90% of the collapsing liner's 
kinetic energy) and axial momentum 
would agree (as close as possible) 
with the corresponding properties 
calculated by the DEFEL code for the 
aluminum-confined charges. Note 
that a close match was able to be 

. made with the jet kinetic energy, 
but that the collapse formula's 
axial momentum values are 4.7 and 
7.3 percent lower than the DEFEL 
predictions. Once the model was 
calibrated, calculatio;s of the 
other three cases were performed. 

Comparison of results listed in 
Table 2 show quite good predictions 
of tip velocity. The simplified 
model differs from the HELP results 
by an average of 3.2% (maximum dif­
ference of 5.1%), from the DEFEL 
results by 5% (10% maximum), and 
from the experimental results by 
3.2% (8.3% maximum). Moreover, 
trends in tip velocity caused by 
variations in liner and confinement 
are reflected in the results of the 
simplified model. We may conclude 
that this model can be a useful tool 
for the designer. 

PARAMETRIC STUDY 

To further investigate trends 
in jet properties caused by varia­
tions in design parameters, a 
parametric study was performed. 
Specifically, variations in liner 
thickness and tapering, were consi­
dered. The 3%-constant-wall 
copper-lined hemi with thin alumi­
num confinement shown in Figure 2 
was chosen as a baseline about 
which variations were made. 

First, liner thickness was 
varied over a range of 1.5% to 5% 
of the charge diameter. Figure 6 
shows that, as expected, tip velo­
city decreases with liner thick­
ness, while Figures 7 and 8 show 
that total jet momentum and kinetic 

5.0 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

Wall Thickness (%) 
Figure 6. Variation in Jet Tip Velocity 

with Liner Wall Thickness as 
Predicted by Simplified Model. 
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energy increase over this range. 
This indicates that very thin 
liners make less efficient use of 
the available explosive energy. 
Still, total kinetic energy does 
not vary a great deal, only about 
15% over a three-fold range of 
liner thickness. 

Next, the effect of liner 
tapering was examined. First, 
liner thickness at the pole tp was 
fixed at 3.3 mm, while thickness at 
the rim te was varied from 1.0 to 
4.0 mm. As shown in Figure 9, 
thinning the rim (increasing the 
thickness ratio, tp/te ) increases 
tip velocity. As shown in Figure 
10, this increase in velocity is 
gained at the expense of the axial 
momentum. Jet energy, however, 
plotted in Figure 11, is not appre­
ciably affected. 

Variation of tapering while 
holding the rim (or equator) thick­
ness fixed was also considered, as 
included in these three figures. 
Thickness at the pole was varied 
OVer a range of 1. ° to 4.0 mm. 
Even over this large range, thick­
ening the pole reduces tip velocity 
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only about 10%, as shown in Figure 
9. Figures 10 and 11 show that 
increasing the pole thickness in­
creases both jet momentum and 
kinetic energy. 

CONCLUSIONS AND DISCUSSIONS 

A simplified model based on 
consena tion of. mass, momentum, and 
energy has been developed. With 
proper selection of the assumed 
ratio of tip to tail radii, this 
model gives good agreement with 
experimentally measured and code­
calculated jet velocities. Also, 
parametric curves generated by the 
model give insight into the effect 
of variations in charge configura­
tion on jet properties. 

In the model, the ra tio of the 
tip radius to the tail radius was 
assumed to be a constant. While 
this may be accurate for a set of 
charges of largely similar confi­
guration, we have found that for 
widely differing charges, this ratio 
can have quite different values. 
For design purposes, it is recommen­
ded that this ratio first be esta­
blished for the baseline design, and 
then used in the model to predict 
the effect of minor design changes. 

The collapse formulas presented 
here represent a simple, mathemati­
cal method for coupling the classi­
cal Gurney formulas for plate 
projection and cylindrical implosion 
for application to a hemispherical 
liner. While this set of formulas 
was able to be fit closely to the 
few cases considered here, a formula 
based more on physical principles 
would be more widely applicable. 
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