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ing jet.

Presented is a simplified model of jet formation of
'shaped charges with hemispherical liners.
shape and velocity of the jet are expressed as functions
of the liner's total momentum and kinetic energy. Then,
a formula 1is proposed for the liner's collapse velocity,
based on a combination of the Gurney formulas for plate
acceleration and cylindrical implosion. This veloclity is
integrated over the liner to yield its total momentum and
energy, and hence determine the properties of the result-

First, the

INTRODUCTION

This paper presents a simple
model of the jet-formation process
in shaped charges with hemispheri-
cal liners. It is a continuation
of the work reported in [1], [2]
and [3]. In {1], an implosively
loaded hemispherical liner was
simulated by the two-dimensional
computer code HELP, and the results
were compared with those of the
implosively loaded case. It was
shown that the formation of jets
from the three types of 1liners,
namely, implosively 1loaded hemi-
sphere, point-initiated hemisphere,
and cones, are all different. In
- [11 and [2], 1liner material flow

was analyzed in detail, but speci-
fic models, from which quantitative
calculation and prediction can be
made, were not offered.

Physical models with simple
equations are needed. Even though
computer codes yield detailed in-
formation, they are time-consuming,
and their results are difficult to
analyze. Physical models affer
more Iinsight into formation mechan-
isms, and are easy to use. For
conical shaped charges, the well-
known P-E-R model [5] gives an
accurate plcture of the formation
mechanism and has been used widely.

Few models for hemlspherical
liners have been offered 1in the
past. Reference [6] gave a simple
jet—-formation model based on the

assumption that a liner element (of
a circular ring shape) forms a
single solid cylindrical jet element
of constant velocity (see TFigure 6
of [6]). An element through the
liner thickness at the hemisphere's
apex forms the jet tip, and the tip
velocity 1is calculated £from this
element alone, without interaction
with other liner -elements. It is
clear from the computer-code simula-
tions of [1] and ([2] that their
assumptions are overly simplified.

In this paper, a simplified
model of jet formation for hemi~
spherical shaped charges 1is present-
ed. This model has two main parts.
In the first part, jet tip and tail
velocities are expressed as explicit
functions of  total 1liner momentum
and kinetic energy. In the second
part, a formula for the liner coll-
apse velocity is proposed, which can
be used to determine the 1liner's-
momentum and energy.

We first present the develop-
ment of these two parts of the
theory. Results of the model are
then compared with code simulations
and experiments. Finally, parame-
tric calculations with the model
show that it correctly predicts
trends due to variations 1in liner
thickness and liner tapering.

THEORY
Observation of radiographs show

shows that the radius and velocity
of jets from hemispherical 1liners
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usually both have linear variations
along the length. For simplicity,
the jet 1is assumed to thave the
shape of a truncated cone and a
linear distribution of velocity
along its length as shown in Figure
1. The accuracy of this assumption
is demonstrated in Figure 2, which
presents a grid plot from a DEFEL
simulation of a  hemispherical
shaped charge. The linearity of
the jet velocity was more fully
demonstrated in [3], and the line-
arity of the radius is discussed in

[21.

e
]
l
M,
B

The jet can then be completely
described by specifying four pro-
perties: the velocities and radii
of 1its tip and tail. These proper-
ties can be determined by four imput
quantities. Three of the inputs
could be the total mass, axial
momentum, and kinetic energy of the
collapsing liner. Under these
conditions, the mass, axial momen-
tum, and kinetic energy of the jet
may be expressed as:

1
3 omerg? (p2 + p + 1) (1)

=
[

. A
= Tipwzrnz [(3p2 + 2p + Vg,

+ (p2 + 2p + 3)V,] (2)
% ” 1
v 2
m + (3p% + Gp + 3)VmVn
+ (p2 + 3p + 6)v,2] (3)
where
p = o
v Tn
n
and
Jet Position 2 = jet length
Figure 1. Linear Distributions of Jet Tm f tip radius
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Figure 2. Finite-element Grid of Jet Projected by the Charge Shown,
as Calculated by the DEFEL Code.
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If the mass, momentum, and
energy of a collapsing 1liner are
given, then the above equations are
insufficient to determine all four
variables that describe the jet's
velocity distribution and shape.
However, 1f the ratio of the tip and
tail radii is known, these three
equations may be inverted to give
expressions of the velocities and
radii in terms of the mass, momen-

‘tum, and energy. Thus, the above
equations may be rearranged to
yield:
\/ 2 K 3
B = (Z2L 4 P3R2 y L BJ (4)
Vee  3p2 2sz1) p2
V. K ‘
.« U v A
Vee 2Ky A (5)
2, - M 1
Ipol = —— = 6
n e (6)
in which
_ (Ko2-4R1K3 | 5pp E 1/2
A=l 4K4 + 3Ky (1 2 Weg )]
pr=p2+p+1
2
=P p,1
P23 *3%%
2
P 1
P3=g+5+g
' 1
P =0’ + Ttz
2
P 2p , 1
P53 t3 t3
2
pg = - +5+1 )
32p4
Ky = 2385 4 pg + 2B
p P2
4p1p3p 2 p1p
Ko = + 2 BiP5
2= 5ttt 3 P2
4 2
Ka = _BAE}_
37 Topyt
and Veg = P/M 1s velocity of the
center of mass of the jet. Given

the jet mass M, axial momentum P,
kinetic energy E, and radius p, the
jet's tip and tail velocities and
radii may be computed from these
equations.

Note that the expressions for
jet veloeity, Equations (4) and
(5), depend on the jet radii only
through - their ratio, p = ry/r,.
That 1is, the velocities are inde-
pendent of the scale of the jet, as
expected. If we assume a value for
the radius ratio p, then the tip

and tail velocities of all possible

jets
curve,

may be given by a single

Such a plot is given in Figure
3 for a value of p = 0.25. Obser-
vation of jet radiographs and the
results of hydrocode simulations
indicates that this value is a good
approximation. Ratios of the tip
and tail velocities to the average
veloclity are plgotted versus
energy ratio E/3MVgg2. The value
of the energy ratio reflects the
rate of jet stretching. For an
energy ratio equal to unity, V, =
Vn = Veg, and there is no stretch-
ing at all, For a given Vg,
greater energy indicates a larger
difference between V, and V,, and a

higher stretching rate. For a 42°
conical charge, Vg is high (5.24
km/s); therefore, the actual

stretching is high, even though the
energy ratio is small.

the -
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Figure 3. Comparison Between Simple
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Included in Figure 3 are a Figure &4, we see that, for jets of

number of points corresponding to equal energy, tip velocity decreases
jet veloeity data predicted by and tall velocity increases with
DEFEL. These data are also listed average jet velocity. This may be
in Table 1. Note that these points explained by considering that the
are quite close to the curves, jet kinetic energy may be divided
Also included are data points from into two parts, one associated with
tests of a 42° conical copper the average velocity and the other,
shaped charge and a copper self- the stretching component.

forging-fragment (SFF) charge. The
SFF data fall appreciably 4inside
the curves, probably because the
radius ratio was actually somewhat

1 1
E = E-IVZ dm = 5 IVCGZ dm

greater than 0.25. +.% [(V2 = Vgg2) dn (7)
Several observations can be 80 —T—T—T l"j T
made 1in this figure. First, the I ENERGY = 1
code data fit the curves quite ~ L —
well, This 1indicates that the 2 s -
assumptions made as to the charac- E 3 ]
ter of the jet (linear velocity. ~ - 5
distribution, truncated conical a3 0“0 i
shape, ratio of tip to tail radius) & - .
are acceptable, and that mass, g g0 - ;
momentum, and kinetic energy are g - 7
indeed constant. o B ]
) = 20— 7
Second, some predicted rela- o X ]
tionships among jet characteristics S - .
may be clearly seen from these wo T ]
curves. For a glven average jet i 5 7
velocity Vgg, the tip velocity 2ok —
increases and the tail velocity 3] - .
decreases with kinetic energy; that 3 i i
is, stretching rate increases with g -10 |- TAIL —
kinetic energy. r : Mass FIXED ]
F o TR
For a warhead of given siz -20 b - - : : :
giv slze, 0.0 2 4 8 8 1.0 1.2
however, experience has shown that
‘the available energy is practically Forward Momentum (kN-s)
constant. (In fact, code simula- Figure 4. Jet Tip and Tail Velocities
tions have shown that shaped char- as a Function of Total For-
ges, hemi charges, and self-forging- ward Momentum for Several
fragments of  the same- diameter Values of Jet Kinetic Energy
project jets with kinetic energies as Predicted by the Model.
within 20%Z of one another,) 1In
Table 1. Data from Hydrocode Simulations of Hemispherical Charges
Charge Liner Thickness ilinetic Forward Velocitv (knm/s)
Design Diam. —-=-—---—-—-——-——rw—-- Energy Momentum Mass -—-—mo-r——eeomme——
No. ' {mm} Pole (mm) Rim (MJ) (KN-s) (Ra) Tip Tail C.G.
Li-A 127 3.8 3.8 0.788 0.643 0.435 4.86 0.00 1.47
L1-B* 127 3.3 3.3 0.873 0.694 0.435 58.11 0.2 1.58
2-A 12 3.3 1.65 0.861 0.613 0.32% 5.18 0.00 1.89
L2-B* 127 3.3 1.65 0.951 0.660 0.323 5.45 0.20 2.04
LD-1 95 2.09 209 0,885 0.499 0.178 6.60 0.60 2.79
LD-2 95 2.375 1.4258 0.940 0.478 0.159 7.2 0.65 3.00
LD-3 85 2,88 1.425 0.871 0.453 0.169 7.00 0.61 2.68
LD-4 95 3.8 1.9 0.805 0.483 0,212 6,50 0.64 2,27
I.D-5 95 2,375 1.1875 0.910 0.439 0.154 17.62 0.61 2.86

*with wave—shaper



When the average velocity is iIncrea-
sed, the first term becomes larger.
If the total energy is constant, the
stretching component must then
decrease.

For hemispherical liners,
hydrocode simulations indicate that
all the 1liner mass goes into the
jet. If the mass of the jet 1is
fixed, and the total kinetic energy
is fixed, then the model shows
larger total forward momentum, and
smaller tip speed, as shown in
Figure 4.

The forward momentum 1s depen-
dent on the liner slope. At one end
of the spectrum, the liner is close
to a disc, 1like an SFF liner; all
the energy serves to drive the liner
forward. As a result, the forward
momentum is large, but the differ-
ence between jet tip and tail speeds
is small, and tip speed is low. The
other extreme is a small-angle
conical liner (shaped charge), where
initially most of the 1liner energy
is in the form of inward radial
velocity, and later splits into a
fast-moving jet  tip, and  slow-
moving jet tail or slug. The net
forward momentum is small. 1In other
words, for fixed total jet mass and
kinetic energy, the high tip speed
is achieved by driving the 1liner
more inward radially, the high-speed
portion of the jet has less mass,
and the total forward momentum is

" small. ’

This model 1s° primarily for
nearly hemispherical liners, but it
is also applicable to SEFs. For a
non-stretching SFF projectile, with
no velocity gradient, the forward
momentum is a maximum, as shown in
Figure 4 as the extreme right point
on each constant—~energy curve.

When applying this model to
conventional shaped charges with
narrow angle cones,” there are two
ways of accounting for the mass.
The total liner mass could be consi-
dered, which means that the jet tail
is actually the "slug" tail, accord-
ing to the accepted theory and
terminology of [5]. Alternatively,
only the mass of the jet may be
considered, excluding the mass of
the slug. '
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FORMULAS FOR LINER COLLAPSE

Equations (4) to (6) can be
used to predict jet-velocity and
radius distributions 1f the jet's
total mass, momentum, and energy are
known. These quantities are assumed
the same as for = the collapsing
liner. In this section, formulas
for the velocity of each point of
the liner are presented. The total
momentum and energy will then be
obtained by integration,

The nature of the explosive
acceleration of a hemispherical
liner varies along the 1liner's
contour, Near the 1liner axis, the
problem is similar to the accelera-
tion of a metal plate by a laver of
explosive. But near the rim, the
situation is closer to the explosive
collapse of a cylindrical shell. To
predict the velocity of the collap-
sing hemi 1iner, then, we shall
combine the Gurney  formulas for
these two problems.

If we denote by Vp
nent of liner velocity due to plate
acceleration, and by V. the compo-
nent due to cylindrical implosion,
then the total velocity may be given

by:

Viotal = £(s) Vp + g(¢) Ve (8)

the compo-

where f and g are functions of the
liner polar coordinate ¢. The total
velocity includes only the plate
component at the pole, £(0°) =1,
g(0°) = 0, while at the rim, only
the cylindrical component, £(90°) =
0, g(90°) =1. Also, over the
entire liner, we require that f(¢) +

g(¢) = 1. Several sets of functions
satisfying these requirements have
been considered  here, the most
successful of which 1is
£(¢) =1 - sin ¢

(9)
g(¢) = sin 4

The velocity components Vp and
Ve are obtained from the appropriate
Gurney formulas. The classical
formula for a plate is:




Q+2g3+1 ¢
Vp = V2E [ R + =171
6(1 +C—)

P

L
i

where E is the Gurney energy, M is
the liner mass, and CP is the explo-
sive mass associated with the plate
formula, defined as a cylindrical
tube projected axially from the
liner element, as in Figure 5.

The other velocity component is
given by the cylindrical implosion
formula derived by Chanteret [7]:

(11)

- 2 -Re20M  1,.9/3

where Ry and Rg are the interior and
exterior radii of the explosive, and
Ceo 1s the mass of the explosive
associated with the cylindrical
implosion formula, defined in Figure

¢

|
|
|
l

Flgure 5. Deflnltlon of Metal and Explo-

sive Masses Used in Gurney
Formulas.

5 Ry is the radius of an assumed
rigid surface within the’explosive,
given by:

3 po_ (M M
Rx> + 3Ry [(Re-l-Ri)v T (CcRe + -C-};-Ri
+ RyRe] = 3(Ry + Re)RiRe [5 +

po (O _; =
v ( o + )] 0 (12)

This equation may be solved analyt-
ically for Ry. My is the mass of
the confinement (tamping), defined
in Figure 5, and py and pgy are the
Initial and Chapman-Jouguet densl-
tles of the explosive.

The above equations give the
magnitude of the velocity, but not
{its direction. The angle § of the
velocity with respect to the origi-
nal normal to the liner is given by
the unsteady Taylor relation [8]:

\/ 1
8 =‘2‘%—'2'V0'T —%VOT' (13)

where T is the characteristic
acceleration time of the 1liner and
the primes denote differentiation
along the meridian of the liner.
Here, we take 1 to be a constant,
so that the last term vanishes. U
is the sweeping velocity of the
detonation wave over the liner:

U= 322—7 (14)

in which Up is the explosive deto-
nation velocity and y 1s the angle
between the detonation wavefront
and the tangent to the liner,

Once the velocity and direc-
tion of collapse are known all
along the liner, its mass, momen-
tum, and energy may be found by
evaluating the Integrals:

M = jgmax 2moRyt sin ¢ db (15)

pmax (16)
P = IO 2mpRyt Vo sing cos(¢-5)d¢

2
= [0 2Ryt stn ¢ 18- dp (17)

=
i

The mass can be integrated exactly,
but the momentum and energy must,
in general, be integrated numeric-
ally. These quantities may then be
substituted into Equations (4) to
(6) to determine the properties of
the jet.

COMPARISON WITH HYDROCODE
CALCULATIONS & EXPERIMENT

As a test of the simplified
model, calculated results are com-
pared with other results for actual
hemi charges. Table 2 lists tip
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Table 2. Compa}iSOn of Model with Hvdrocode Calculations and Experiments

Liner Tip Velocity Ilinetic Energv Momentum
Thickness Confine- ---—=———- (km/8)=—=————m ————— (MJ) === ——— (RN-g)=—==—-
(% C.D.) ment HELP Exp. DEFEL Model DEFEL Model DEFEL Model

3.3 none 4,29 NA NA 4.15 NA 0.528 NA 0.505
2.8 3.2mm Al 4.39 4.43 4.42 4,41 0.596 0.603 0.572 0.545
3.3 5.4mm St 5.2 4.96 NA 5,00 NA 0.789 Na 0.632
3.0-1.5 3.2mm Al 4.85 4.94 4,64 5,10 0.603 0.607 0.520 0.482
3.0-1.5 6.4mm St 5. 6.2 NA 5.76 NA 0.781 NA 0.550

velocities for five different charge
designs, as simulated by HELP and
DEFEL codes, as measured in experi-
ments, and as calculated from the
simplified model. The HELP code and
experimental data are from BRL [9,
10], and the DEFEL simulations were
performed by Dyna FEast [2, 3l.
These charges are 4ll similar to
that shown in Figure 2, except for
liner tapering and confinement.
Included are an unconfined charge
with the uniform~-wall liner and 6.4-
mm—-thick-steel-confined charges with
the tapered and uniform-wall liners.,

The simplified model was first
calibrated by adjusting the collapse
formulas, Equations (8) and (13), so
that the jet kinetic energy (taken
as 90% of the collapsing liner's
kinetic energy) and axial momentum
would agree (as close as possible)
with the corresponding properties
calculated by the DEFEL code for the
aluminum-confined charges. Note
that a close match was able to be

‘made with the jet kinetic energy,
but that the collapse formula's
axial momentum valyes are
7.3 percent lower than the DEFEL
predictions. Once the model was
calibrated, calculations of the
other three cases were performed.

results listed in
good predictions

Comparison of
Table 2 show quite
of tip velocity. The simplified
.. model differs from the HELP results
by an average of 3.2% (maximum dif-
ference of 5.1%), ‘from the DEFEL
results by 5% (10% maximum), and
from the experimental results by
3.2%2 (8.3%2 maximum). Moreover,
trends 1in tip velocity caused by
variations in liner and confinement
are reflected in the results of the
simplified model. We may conclude
that this model can be a useful tool
for the designer.

4,7 and .

Tip Velocity (km/s)

PARAMETRIC STUDY

To further Iinvestigate trends
in jet properties caused by varia-
tions 1in design parameters, a
parametric study was performed.
Specifically, wvariations in liner
thickness and tapering, were consi-
dered, The 3%Z-constant-wall
copper—~lined hemi with thin alumi-
num confinement shown in Figure 2
was chosen as a baseline about
which variations were made.

First, 1liner thickness was
varied over a range of 1.57 to 5%
of the charge diameter. Figure 6
shows that, as expected, tip velo-
city decreases with 1liner thick-
ness, while Figures 7 and 8 show
that total jet momentum and kinetic

8.0

LA L L L A L L DL B

a

o
o

>
o

o
o

-

p b by b b by by b b b

4.0 5.0 8.0 7.0 8.0 2.0

2.0

0.0 1.0 20 10.0

Wall Thickness (%)

3.0

Figure 6. Variation in Jet Tip Velocity
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with Liner Wall Thickness as
Predicted by Simplified Model.
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energy increase over this range.
This 1indicates that very thin
liners make less efficient use of

the available explosive energy.
Still, total kinetic energy does

not vary a great deal, only about
15%2 over a three-fold range of
liner thickness.

Next, the effect of 1liner
tapering was examined, First,
liner thickness at the pole t, was

fixed at 3.3 mm, while thickness at
the rim t, was varied from 1.0 to
4.0 mm, As shown 1in Figure 9,
thinning the rim (increasing the
thickness ratlo, t,/ts) increases
tip velocity. As shown 1in Figure
10, this increase in velocity is
gained at the expense of the axial
momerntum, Jet energy, however,
plotted in Figure 11, is not appre-
clably affected.

Variation of tapering while
holding the rim (or equator) thick-
ness fixed was also considered, as
included in these three

Figure 7.

Jet Kinetic Energy (MJ)

'Figure 8. Variation in Jet Kinetic Energy Figure 9.

5

Variation in Jet Axial Mom-
entum with Liner Thickness
as Predicted by the Model.
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figures.
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only about 10%, as shown in Figure
9. Figures 10 and 11 show that
increasing the pole thickness in-
creases both jet momentum and
kinetic energy.

CONCLUSIONS AND DISCUSSIONS

A simplified model based on
conservation of mass, momentum, and
energy has been developed. With
proper selection of the assumed
ratio of tip to tail radii, this
model gives good agreement with
experimentally measured and code-
calculated jet velocities. Also,
parametric curves generated by the
model give insight into the effect
of variations 1Iin charge configura-
tion on jet properties.

In the model, the ratic of the
tip radius to the tail radius was
assumed to be a constant. While
this may be accurate for a set of
charges of largely similar confi-
guration, we have found that for
widely differing charges, this ratio
can have quite different wvalues.
For design purposes, it is recommen-
ded that this ratio first be esta-
blished for the baseline design, and
then used in the model to predict
the effect of minor design changes.

The collapse formulas presented
here represent a simple, mathemati-
cal method for coupling the classi-

cal Gurney formulas for plate

projection and cylindrical implosion
for application tc a hemispherical
liner, While this set of formulas
was able to be fit closely to the
few cases considered here, a formula
based more on physical principles
would be more widely applicable.
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