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'B'ased on the P'ug"fi -E, chelberger theory, two sets of 
penetrati on equatfons have been developed. The fi rst one 
involves the penetration of a monolithic target by a shaped 
charge jet with non-linear velocity distribution. The 
second involves the penetration by shaped charge jet on 
layered targets. 

Introduction 

The classical penetration 
theory by shaped charge jet into 
semi-infinite target is based on a 
constant velocity jet. It is 
applicable to a small segment of the 
jet where its velocity can be 
considered constant. When applied 
to acutual jets, it is customary to 
consider the jet velocity varies 
linearly along its length, which is 
true for most jets from conical 
liners. 

Recent research by U.S. Air 
Force has indicated that most jets 
from modern shaped charges have a 
non-linear velocity distribution, 
Ref [1J. In this paper, equations 
are derived for these non-linear 
velocity jets. The non-linear 
velocity distribution is ap
proximated by two linear segments. 
Each of these segment is associated 
with a virtual origin. 

With the same jet tip and jet 
tail velocities, the one with a 
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concave downward velocity distri
bution has deeper penetration than 
the linear (straight line) case. 

Formulas are also derived for 
jet' penetration into layered target. 
It includes spaced armor, where the 
air space is considered as a layer 
with negligible density. It can 
also be generalized to targets of 
continuous but varying density 
distribution. It is interesting to 
note that for a given set of layered 
plates with different density, less 
penetration can be made by a given 
jet, if the denser layer is arranged 
near the surface, closer to the 
charge. 

Penetration by Linear-velocity jets 

We shall start with Pugh-
Eichelberger's hydrodynamic pene
tration theory without strength 
effect. Let V,U'Pj,Pt be the jet 



velocity, penetration velocity, jet 
density, and target density, 
respectively. From Bernoulli's 
equation 

we obtain 

2 
P j (v-u) 

v 

2 
= P U t 

u = -, where 
I+y 

1/2 
y = (pt/Pj) 

The jet velocity v is not 
constant along the jet, but varies 
with x, a parameter identifying the 
jet particle. 

The penetration curve (bottom 
of the penetration hole) , has the 
equation 

dl; 
= u 

dt 
(1) 

or 
dl; v(x) 
- = dt I+y 

where I; is the space variable. Eq 
(1) is the differential equation of 
the penetration curve. Assuming the 
existance of a virtual origin 
(V.O.), Ref. [3J, the particle path 
lines have the equation: 

I; = v(x)t 

Combining (1) and (2), and 
eliminating v(x), we have 

dl; I; -= ---dt (1+y) t 

(2) 

. (3) 
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r-
Integrating (3) gives 

I; = k t I /(1+y) 
r-

where k is a constant of integrat- ~ 
ion. 

Let tI be the time the jet tip 
reaches the target surface, located 
at I;=S, therefore, 

or 

s = ktI I/(1+y) 

k = st -I/(1+y) 
1 

The equation in the t,1; plane for 
the penetration curve is then 

, = s( :j/(!+Y) 
or 

, (!+y) = s (!+Y)(:J (4) 

r-
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Substituting (2) into (4) and ., 
noting that s = vItI, where vI is 
the jet tip velocity, we have r-

I; (1+y) = S (1+y) (~) 
; v s 

or 

I; = set ( 5) 

The penetration depth P by the 
jet particle with velocity v is 
then 

P=I;-S 

or 
p = s[er/Y -~ (6 ) 
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Figure 1 is· a schematic showing 
the particle path lines and the 
penetration curve in the space-time 
plane. Note that s is the standoff, 
measured from the V.O. to the 
surface of the target, v1 is the tip 
velocity, v is the velocity of the 
particle that gives the depth P. As 
a check, we may find the slope of 
the penetration curve by taking d/dt 
of (4) after, some simplication, it 
gives 

ds 
dt 

= 
1 

v(x) 
1+y 

which agrees with Eq. (3). 

(7) 
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Penetration_by Non-linear Velocity 
Jets 

Next, let us consider the case 
where the velocity distribution is 

t 

not linear, which implies that a 
single virtual origin does not 
exist. For simplicity, we shall use 
a bi-linear velocity distribution to 
represent the non-linear case. As 
shown in Figure 2, the velocity 
distribution is given by two 
straight line segments, AD and DB. 
This will be compared with the 
linear velocity distribution ACB. 
Note that points C and 0 have the 
same velocity V2. 

For the linear case ACB, there 
is a virtual origin, which will be 
taken as the origin of our t,s 
coordinates. 

The penetration P of the linear 
case, as given by Eq. (6), is 

vlx) 

~Penetration Curve 

d5 = u 
dt 

~Jet Tip Path Line 

v=vl 

(8 ) 

Figure 1. The Jet Particle Path Lines and 

the Penetration Curve in the 

Space-time Plane. 
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Figure 2. Velocity-Space and Time-Space Diagram of a Jet with 
Bi-linear Velocity Distribution and their Penetration Curves. 
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where vI and v3 are the jet tip and 
tail vel oci ti es ,-respecti vely. 

Now let us consider the 
nonlinear case ADB. Let the 

r' distance CD be z. It can be shown, 
Ref. [2J, that the particle path 
line corresponding to D is 

,I , 

, C! 

" 

, 

(9) 

where v2 is the velocity of both 
;poi"nts C and D. In the t-I; plane, 
:the path line of point D is the 
iStraight line with a horizontal 
!intercept (-z). Solving the; two 
'straight line equations I; = v1t and 
I; = v2t -z, we find the intersection 

.of these two lines, point E in 
iFigure 2, with the horizontal 
!coordi nate 

I ' 

lSi mil a r 1 y , the 
between 1; -v t and I; = 
F, has the cdordinate 
I 

(10) 

intersection 
v2t-z, point 

(ll ) 

. The penetration due to the 
's egment AD can be ca 1 cu 1 ated from 
iEq. (6) by cOrlsidering E as the 
Virtual origin, and the standoff as 
~ -z12, or, 
I 

\AC:)- 1] I PI = (s -

I (12) 

= (s 
vIz 

v2 -

IThe penetrat ion 
segment DB may 

v)[(2t~ 1]. 
due to the jet 
be calculated by 
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using the virtual original at point 
F, or 

The total penetration Pt for 
this bi-linear case is PI + P2, and 

I after some algebraic simplification, 
it reduces to 

Pt = Pl. + P 2 . 

= s (~: -1) + z [::, 

(14 ) 

i_~ere VI: is used for v Illy . 
I For a copper jet penetrating a steel 
. target, the density ratio y is close 
. to unity. For simplicity, consider 
I I 

Ithe case of y=l, then vI = vI, and 

(15) 

This penetration is larger than 
Ithe linear velocity case. It is 
iequivalent to increasing the stand-
off distance from s to s+z. The 

! ratio of 
I 
I Pt/ P is 

Pt z 
= 1 + - (16) 

P s 
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This shows that the nonlinear 
velocity case with z > 0 has more 
penetration than the linear case. 
The difference is z/s percent more, 
where z is the ~ intercept of the 
particle path line 0, or the 
distance CD in Figure 2. This may 
also be seen by simple reasoning as 
follows. The particle with velocity 
v2, at point 0, is IIformed li earlier 
than the particle with the same 
velocity v2, point C, in the linear 
case. If the tip and tail (A and B) 
are the same between the linear and 
nonlinear cases, then all particles 
in the nonlinear case must have 
their point of formation, or 
equivalent virtual origins to the 
left of the point O. Their 
effective standoff must be larger 
than s, therefore more penetration. 

The same argument and results 
can be applied to the case where z < 
0, or a concase upward velocity 
distribution. When z < 0, the 
penetration is smaller than the 
linear case. In general, the 
velocity distribution curve, if 
not linear, will give more 
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penetration when concave downward. 

The net difference in 
penetration due to nonlinear 
velocity is of minor effect at large 
standoff, since when s is large, zis 
is small for a given z. Figure 3 
shows the velocity of the jet from a 
bi-conic charge Ref. [lJ. The dot
pOints are the velocity of 
different mass particles in the jet 
as determined by flash x-ray 
pictures and a mass-summing 
technique. The spacial distribution 
of the velocity is non-linear; it 
can be approximated by two linear 
segments, AD and DB, as shown in the 
figure. The dotted line AB 
connecting the tip and tail 
velocities is drawn in for 
comparison. The distance DC, which 
is z in Eqs. (14) and (15), is about 
125 mm, (This distance 
remainS constant as the jet is moving 
forward, because the velocities at D 
and C are identical). At a short 
stand-off of 125 mm, this non 
-linear jet can penetrate 
approximately twice as deep as a 

*'A • /I~' 
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/ 

/ 
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- velocity detennined by 
flash x-ray and" the 
summed mass technique 
of Ref [l. ]. 

Jet Path Po!:itioJl (U.i:. ~ 
~ -

-----_.-

Figure 3. Jet Velocity Distribution of a Biconic-liner Charge, 
Taken at 100 usec After Detonation. 
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linear jet with the same tip and 
tail velocities. 

The penetration of a shaped 
charge jet with non-linear concave 
downward velocity distribution in 
semi-infinite target is zls percent 
more than that from a corresponding 
charge with identical tip and tail 
speeds, but with linear velocity 
distribution. Here, s is the 
distance between the surface of the 
target and the virtual origin of the 
linear case, or the intersection of 
the particle path lines formed by 
the tip and tail; z is maximum 
distance between the position of a 
particle and the position of a 
particle with the same velocity, but 
with linear velocity distribution 
with respect to the tip and tail 
particles. Also, z is positive when 
the velocity distribution curve is 
concave downward. 

Penetration of Layered Target 

The incompressible hyrodynamic 
theory of jet penetration will be 
extended to the case of layered 
target. The penetration as a 
function of jet velocity, Eq. (6), 
can be inverted to give 

( 17) 

This equation gives the 
particle velocity in a jet that will 
penetrate a depth P. Since the jet 
velocity of a given jet particle is 
essentially constant, jt is 
convenient to use jet velocity to 
identify the jet particle. 

Consider now a layered target 
as shown in Figure 4, where: 

d
i 

= thickness of the ith layer 

s. = standoff distance from V.O. 
1 to the front of the ith layer. 

7 

1/2 Y1 = (Ptl/Pj) 

Vo = jet tip velocity 

v1 = velocity of jet particle 
penetrating the back surface 
of the first layer 

Pti = density of the first target 
1 ayer 

Then 

or, 

The velocity emerging 
back of the second target 
then, 

_ v _ _ (Sl)Y1 
o s 

2 

(18) 

from the 
1 ayer is 

This may be extended 
target of ith layer as 

to a 

Yi 

C;J 
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Figure 4. Geometry of a Shaped Charge with Virtual 
Origin Penetrating a Layered Target. 
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(19) 

In thi~ equation, vi is the jet 
particle velocity that will emerge 
from the back of the ith target 
layer. When the target thickness is 
not too large and the actual jet can 
penetrate through all layers, Eq. 
(19) is applicable. When the target 
is too thick for the jet to 
penetrate through, the penetration 
will stop at a jet velocity vmin as 
discussed in Ref. [4J. The jet mass 
with velocity below vmin will, have 
no penetration ability. 

In deriving Eq. (19), the 
target strength and the jet break-up 
have both been ignored; it is 
applicable at short stand-off where 
the jet has not broken and its 
velocity is high. It gives a 
measure of the amount of jet, 

RHA AL 

AL RHA 

~-1. ___ --------

75 ,1 .. 5°.1:° I 
i I ! 
, I I 

(length in mm) 

identified by the jet particle 
ve 1 ocity, that wi 11 be IIconsumed II by 
a given layered target. . 

As a numerical example, 
consider the case of a copper jet 
perforating a target of two 50-mm 
layers, one with the RHA in front 
and aluminum in the back, the other 
just the opposite, as shown in 
Fi gure 5. A copper jet with ti p a 
velocity of 10 km/sec is assumed. 
The front of the 1 ayered . pl ates are 
placed at a stand-off distance of 75 
mm from the charge. With the 
density of copper, steel, and 
aluminum of values 8.96, 7.87, and 
2.7 gr/cc., respectively, the 
corresponding values of y for steel 
(RHA) is 0.937, and for aluminum 
0.549. The emerging jet velocities 
calculated from Eq. (19) are 0.515 
and 0.551 km/sec, respectively. If 
the minimum jet velocity for 
penetration is taken as 2 km/sec, 
the difference of the residual jet 
length is more than 10%. 

I 2 km/sec ~515 km/sec 

I 
== = 

~km/sec ~551 km/sec 

c 

-

Figure 5. Schematic Showing Residual Jet Length and Velocity 
of a Copper Jet with Initial Tip Velocity of 10 km/sec 
after Perforating an RHA-Aluminum, and an Aluminum-RHA 

Plates. 
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The shaped' charge designer 
should not allow any material, such 
as seekers, to be placed close to 
the charge. When present, the high 
density material should be farther 
away from the charge. 

Conclusions 

Based on the hydrodynamic 
penetration theory, it is shown that 
with the same tip and tail 
velocities, the jet with a non
linear concave downward velocity 
distribution gives deeper 
penetration than the linear one. 
Most modern shaped charges do have a 
concave downward distribution, even 
though most were developed from 
trial and error experimentation. 

A simple formula for jet 
penetration in layered-target is 
~erived. It depends on each layer's 
density, standoff distance from the 
oharge, and its thickness. High 
density layers consume more jet 
length, and should be arranged away 
from the charge, especially at short 
standoff from the warhead des i gn 
p:oi nt of vi ew. 
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