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ABSTRACT 

Acceleration of metal liners by explosives is modeled by an approach 
based on Lagrange's principle, which yields not only a final velocity con
sistent with the widely used Gurney model, but also a velocity history. For 
explosive slabs and sandwiches, a closed-form velocity history is derived. 
Cylindrical and spherical charges are also treated but require numerical in
tegration, and example calculations are shown. Finally, applying the ap
proach to the hollow cylindrical charge yields the equations of motion with 
fewer assumptions than previous models; computed results are compared 
with hydrocode computations. This work has applications to fragment 
warheads, shaped charges, and explosive reactive armor. 

Introduction 

Current models for predicting the projection of metal liners by an explosive are very limited 
in their applicability. While they may be quite accurate in treating simple configurations, such as 
spheres and long, uniform cylinders, they can provide only rough estimates of the performance of 
modem warheads, which are irregularly shaped and often hollow. Most current models fail to 
provide an acceleration history of the metal, knowledge of which is important for accurately pre
dicting the angle at which the liner is projected (Randers-Pehrson, 1976, and Chou et aI., 1981). 

The well-known model of Gurney (1943) is limited in that it is essentially an energy method 
involving only one or two degrees of freedom and can treat only a few simple configurations. It 
provides the final velocity of a liner, but not its acceleration or velocity history. For modem war
heads, Gurney is useful only as an upper bound. 

The Gurney model equates the final kinetic energy of the accelerated metal and explosive 
products gases to the available chemical energy of the explosive, commonly called the Gurney en
ergy E G, which is taken as a specific property of the explosive. This results in a formula for the 
final liner velocity Vo of the form 

Vo = J2EG f(MIC) 

where the function f of the ratio of metal mass M to explosive charge mass C has a different form 
for each explosive-metal configuration. For the simple systems shown in Fig. 1, the Gurney ve
locity is (Thomas, 1944) 

Vo = J 2EG (~ + n ~ 2 r 112 (1) 
1 Director of Research, Dyna East Corporation, 3201 Arch Street, Philadelphia, P A. 
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(a) Slab charge (n = 1) 

Explosive, 
mass = C 

(b) Symmetric sandwich (n = 1 also) 

(c) Cylindrical charge (n = 2) (d) Spherical charge (n = 3) 

Figure 1. Single-degree-of-freedom explosive-metal systems. 

where n = 1 for the slab or sandwich, n = 2 for the cylinder, and n = 3 for the sphere. 
The Gurney method has been extended to other configurations, such as cylinders and 

spheres with rigid cores (Sterne, 1947, 1951), the asymmetric sandwich (Sterne, 1947), the hollow 
cylinder (Chou et aI., 1981, and Chanteret, 1983), and other shapes (Jones, 1965, and Crabtree 
and Waggener, 1987). Much of this work has been directed toward improving predictions of 
shaped-charge performance (Chou and Flis, 1986). 

Despite these improvements, Gurney still provides only the liner's final velocity, and not its 
acceleration. A model developed by Henry (1967), however, accounts for the acceleration of the 
metal by the explosive pressure, which decreases as the explosive expands adiabatically according 
to the ideal-gas law. The approach is to formulate the equation of motion of the metal, with the 
explosive pressure P, assumed uniform, as the driving force; e.g., for a slab charge of initial thick
ness xo, an equation is written for the position x of the metal, 

.. (Vo)Y (Xo)Y M x=P=Po v =Po X 

where Po is the initial pressure of the explosive gas, and each superior dot denotes differentiation 

with respect to time. A first integral of this equation is 

.2 2 CPo [ (Xo)'j'-l] 
x = M (y-l) Po 1- x 

where Po is the explosive's initial mass density and C = Po Xo is its mass per unit planar area. 
In Henry's model, the initial pressure Po is taken as an empirical constant of the explosive in 

a similar sense as the Gurney energy. However, as Henry recognized, his model is not consistent 

with Gurney. His final velocity (as x ~ 00) for the systems in Fig. 1 is proportional to (C/M)1I2, 

whereas Gurney's is proportional to [M/C + n/(n+2)]-1/2. The reason for this disparity is that, un
like Gurney, Henry does not account for the inertia of the explosive gas. 
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Jones et al. (1980) addressed the acceleration of pla
nar systems, of which the general case is the asymmetric 
sandwich, Fig. 2. They enforced conservation of momen
tum and total energy at all times, with the explosive's in-

ternal energy given by the ideal gas law, E = Pv/(y-l). 
To this, they added the equation of motion of one liner, MI 

cPxI/dt2 = P, making four equations in Xl, X2' P, and E. 
However, they imposed no adiabatic or other thermody
namic condition on the explosive. Furthermore, their 
model is not entirely consistent with Gurney since the ex
plosive's inertia is accounted for only in the conservation 
equations but not in the plate's equation of motion. 

~---L-M....L..........1 '--L........L..~ x. 

li 

tL.........L...hl2~~~ 
Figure 2. Asymmetric explosive

metal sandwich. 

Carleone and Flis (1981, see also Chou et aI., 1981) addressed liner acceleration in the hol
low cylinder, Fig. 3, which is of interest as an approximation of the cross section of a shaped 
charge. They recognized that, to apply conservation of mo
mentum to the radial direction, the circumferential component 
of the explosive pressure must be taken into account and devel
oped a Gurney-like model based on the conservation equations 
with an empirical formula for the explosive impulse. Previous 
to this, common practice had been to use the Gurney formula 
of the asymmetric sandwich to approximate the hollow cylin
der. They also developed an expression for the parameters of 
an exponential velocity history originally proposed by 
Randers-Pehrson. 

Hennequin (1983) addressed the hollow cylinder in a sim
ilar manner by developing a different empirical formula for the 
explosive impulse. He modeled the acceleration by requiring 
conservation of energy at not just the final time but at all Figure 3 Hollow cylindrical charge. 
times, with the energy of the explosive described by the . 

ideal-gas adiabat, E = EG [1 - (vo/v)y], or by the JWL equation of state. The models of Chou and 
Hennequin yielded better agreement with the results of hydrocode computations. 

Chanteret (1983) modeled the acceleration of the systems of Fig. 1 as well as the hollow 
cylinder. His model also requires continual conservation of energy, with the explosive energy 
given by the ideal-gas adiabat. For the hollow cylinder, he also assumed of the existence within 
the explosive of a rigid surface that never moves; this allows canceling the explosive impulse 
from the conservation equations to yield an equation for the radius Rx of the rigid surface, 

~+3[(RI +~)(RI~2+~ ~1)+RI~]Rx-3[(RI +~)RI~(~+ ~l + ~2)]=0 
(in which some terms accounting for the direction of the detonation wave have been deleted.) 
After solving for Rx' the energy equation is used to find the final velocities, 

M1 R2 -RI 1 3RI +~ ( 
2 2 ]-112 

VI = J2 EG C R; _ R~ +"6 RI + ~ and 

Models 

(2) 

(3) 

This section presents the development of models of several explosive-metal systems follow
ing a unified approach based on Lagrange's principle. 
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Single-Degree-of -Freedom Systems. Henry's model did not account for the inertia of the 
explosive gas (as did Gurney). However, this may be done through the use of Lagrange's princi
ple. The explosive velocity distribution in the slab charge is assumed to be always linear in the 
Lagrangian (initial) coordinate X through the explosive, VgasCX) = x Xlxo, then the kinetic energy 
T of the system (per unit planar area) is 

The potential energy U of the system (per unit area) is the internal energy of the explosive gases, 
which expand adiabatically according to the ideal-gas law, 

U = -J P dv = -f P, (Vo)Y dv = Po Vo (VO)r-l = Po C (\J)r-l 
o v y- 1 v Po (y- 1) x 

Forming the Lagrangian L = T - U, and applying Lagrange's equation, 

~(aL)_ aL =0 
dt ax ax 

yields the equation of motion, 

Integration of this equation yields the metal's velocity as a function of its position x, 

x={ 2PoM 1 [1_(~)r-l]}112 
Po (y- 1) (C + 3) (4) 

If we identify Po as equal to Po (y- 1) E G' then this is the same result as that of Henry, but forced 

at large displacement (x ---7 00) to approach the appropriate Gurney velocity, 

"0 = J2EG( ~ + tr/2 

Equation (4) cannot be integrated for general values of y, which varies by explosive from about 

2.5 to 3.4. However, for the special case y= 3 (a good approximation for many explosives), it 
may be integrated to 

where time t is reckoned from the beginning of motion and T = xc/Vo is a characteristic period of 
the system. The velocity history may now be written as 

. t [( t )2 r1l2 
x="or T +1 (5) 

where the final velocity Vo is identical to the Gurney velocity for this configuration. 
This same approach may be used for any explosive-metal configuration to which the Gurney 

model is applicable. For the systems in Fig. 1, the Lagrangian is 
1 :i p, C (\J)n(r-1) 

L=2(M+n~2C)' -Po(~-l) x 

where the explosive mass is C = Po Xo for n = 1, C = 1tPo x0
2 for n = 2, and C = (4/3) 1tPOX0

3 for n 
= 3, in which Xo represents the explosive thickness for n = 1 and its radius for n = 2 or 3. 
Application of Lagrange's principle yields the equation of motion, 
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nP. C (y~)n(JL-Il+I 
(M + n ~ 2 C) X = P~ T 

the integral of which yields the velocity as a function of x, 

x = { 2 ~ n [1 _ (~ r(JL-Il]}1/2 
Po(Y-l)(C+n+2) 

If we again identify Po as equal to Po (y- 1) E G' then the final velocity is the same as that given 
by the Gurney model, Eq. (1). This equation cannot be further integrated exactly except for the 
case of n (y - 1) = 2, treated above. 

Some computed results illustrate the model's behavior. Liner-velocity histories for planar 

charges (n = 1) are plotted for y= 2.5, 2.7,3.0, and 3.4 in Fig. 4(a), with Po held fixed. Larger 

values of y result in greater rates of acceleration. The differences among these curves are reduced 

by plotting versus a scaled dimensionless time, tlr*, where 

r* = 2 AQ 
n (y- 1) "0 

as shown in Fig. 4(b). This has the effect of making all of the initial slopes (scaled accelerations) 
equal. The similarity in these scaled curves suggests that the error introduced by the approxima-

tion that y= 3 can be reduced by substituting r* for rin Eq. (5). 
Computed liner-velocity histories for planar, cylindrical, and spherical charges are plotted in 

Fig. 5 for y= 3 again in terms of liner velocity normalized by the final velocity (xl"o) versus 

scaled dimensionless time (tlr). The differences among these curves demonstrate that the three 
systems behave differently over time. 

Asymmetric Sandwich. The simplest system having two degrees of freedom is the asym
metric sandwich, first analyzed by Sterne (1947), who handled the additional unknown velocity 
by requiring also conservation of momentum, to yield the formula, 

[ 
1 +A3 M2 2 Mlf1l2 

VG,l = J2EG 3 (1 + A) + C A + C (M) ( M ) 
where A = 1 + 2 Cl 

/ 1 + 2 C2 

VG,2 =A VG,1 

in which the subscripts 1 and 2 refer to the two liners. 

(6) 

To apply the present approach to this system, two Lagrange equations are written. Define Xl 

and x2 as the displacements of the plates, and h as the initial thickness of the explosive layer, as 
shown in Fig. 2. If the velocity distribution in the explosive is again assumed always linear in the 
Lagrangian coordinate through the explosive, then the Lagrangian of this system is 

L 1 [M .2 M'.;2 C ( . .;2 .. ..;2)] Po C ( h )JL-I 
="2 lxr+ 2Az+3 4 - xtXz + Az -Po(y-1) h+xl+Xz 

Applying Lagrange's principle to each coordinate yields two equations of motion, 

(M C) .. Coo D ( h )Y 
1+3 xl - 6 Xz=rO h+xl+Xz 

Coo (M C) .. D ( h )Y -6 xI + 2+3 Xz=ro h+xl+Xz 
(7) 
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These equations may be solved by combining them into a single equation in X = xl + x2; multiply
ing the first equation by (M2 + C/2) and the second by (M

I 
+ C/2) and adding yields 

[M, M2 + ~ (M, +M21 + fzlz=Po (M, +M2 + CJ(h: xY 
A first integral of this equation is 

{ 
2 P, C [ h r-l]} 112 

t= .uPo(~-l) l-(h+ X) 

Normalized 
liner 
velocity, 
xIV 0 

0.5 

where 

o L-__ ~ ____ -L ____ ~ ____ L-____ L-__ ~ ____ ~ 

Normalized 
liner 
velocity, 
xIV 0 

0.5 

o 1 2 3 4 5 6 7 

Dimensionless time, V 0 t Ix 0 

(a) Normalized velocity vs. dimensionless time 

y = 2.5 

o L-__ ~ ____ -i ____ -l ____ -L ____ ~ ____ ~ __ ~ 

o 1 2 3 4 5 6 7 

Scaled dimensionless time, n (y - 1) V 0 t 12x 0 

(b) Normalized liner velocity vs. scaled dimensionless time. 

Figure 4. Veiocity histories predicted by the present model for the planar charge with various 

values of y ranging from 2.5 to 3.4. 
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Normalized 
liner 
velocity, 
xiV 0 

0.5 

o 1 2 3 4 5 6 7 

Scaled dimensionless time, n (y - 1) V 0 t 12x 0 

Figure 5. Velocity histories predicted by the present model for the planar charge, cylindrical 

charge, and spherical charge for y= 3. 

This cannot be further integrated exactly except for the special case y= 3, which yields 

X = h {[ ( ~)2 + 1 t2 -I } 

where T = Jh f1lPo . Now, Eqs. (7) can be decoupled by algebraic manipulation into 

MI M2 + C (MI + M2)/3 + CI12 .. _ [( t)2 r312 
M2 + C/2 Xl - Po T + 1 

MI M2 + C (MI + M2)!3 + CI12 .. _ [( t)2 r312 
MI + C/2 X:2 - Po r + 1 

(8) 

where the quantity (xl + x2) has been replaced by Eq. (8) for X. These equations may be integrat
ed once to obtain the velocity histories, 

. t [( t )2 rl12 
. t [( t )2 rl12 

XI = VI r T + 1 and X:2 = Vz r T + 1 (9) 

where VI and V2 are the final velocities, which, if Pois again replaced by EGpo (y-l), are equal 

to the Gurney velocities VG,I and VG,2 given by Eq. (6). Integrating again yields the displacement 
histories, 

It may be shown that the characteristic time T for this system is also given by 

T= h 
VI + Vz 
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Hollow Cylinder. The equations of motion of the hollow cylinder may be derived in a 
straightforward manner using this approach. Let rl and r2 be the radial coordinates of the inter-
faces between the explosive and the inner and outer metal liners, with initial values R 1 and R

2
, as 

shown in Fig. 3. The distribution of velocity in the explosive gas is again assumed linear with re
spect to the Lagrangian (initial) radial coordinate R, 

R-R 
~a/R) = 1\ + ~ ~ (;-2 - ,\) 

- 1 (10) 

Application of Lagrange's principle to each coordinate r 1 and r2 yields two equations, 

( 
C 3 Rl + ~) .. C·· (Ri -RJ1

Y 

Ml + 6 Rl + ~ r1 + 6 r2 = - 2n Po ~ _ rT r1 

c·· ( C Rl + 3 ~) .. (Ri -RJ1
Y 

6 r1 + M2 + 6 Rl + ~ r2 = 2n Po ~ _ rT r2 

These coupled equations cannot be solved even partially in closed form, but may be numerically 
integrated by, for example, the Runge-Kutta method, used in this study. 

Model predictions are compared with two PISCES code computations reported by 
Hennequin (1983) in Fig. 6 and 7. The two configurations differ in inner explosive radius, Rl = 
20 and 40 mm, but are otherwise the same, having outer radius R2 = 50 mm, with an inner liner of 
copper and outer liner of steel, each 2-mm thick, with an unspecified explosive modeled by the 

JWL equation of state. For the model calculations, values of Y= 2.9, Po = l.8 Mg/m3, and --J(2EG) 

= 2.7 km/s were chosen, for which Po = 125 kbars. In each figure, velocities of the inner liner are 
compared in (a), and velocities of the outer liner in (b). For the latter, Hennequin reported veloci
ties of the inner and outer surfaces, which differ because the liner thickens as it moves inwardly. 

The present model, like those of Hennequin, Chanteret, and Jones et al., predicts well the 
final velocities, but provides too Iowan estimate of the initial acceleration. This is due mainly to 
the action of the detonation wave, in which the pressure briefly reaches a very high value, about 
three times the initial pressure Po used in these acceleration models. 

Model predictions were also compared with a series of TEMPS hydrocode computations 
performed by Carleone and Flis. The ten computed cases had inner radii Rl of 29 and 40 mm, 
outer radii R2 of 50 and 62.5 mm, and various thicknesses hI of inner liner; there was no outer 

liner. The explosive is LX-14, with Po = l.835 Mg/m3, --J(2EG) = 3.35 km/s (which is slightly 

greater than usually quoted), and Y= 2.84l. Final velocities predicted by the present model, by 
Chanteret's Eq. (3), and by the Gurney formula for an asymmetric sandwich, Eq. (6), are com
pared for all cases in Fig. 8 and Table 1. It can be seen in all cases that the present model and 
Chanteret's model both agree very well with the TEMPS code results. A comparison of the 
inner-liner velocity history for one particular case is shown in Fig. 9; again, agreement with final 
velocity is good but initial acceleration is underpredicted by the present model. 

An advantage of this model is that a rigid surface is not assumed to exist in the explosive. 
The model indeed predicts that the point of zero velocity within the explosive moves with respect 
to the Lagrangian coordinate R. Figure 10(a) shows the predicted velocity distributions in the ex
plosive at several times for the case of Fig. 7. Note that the zero-velocity point moves inward at 
successive times. This is further shown by Figure lO(b), a plot of the position of the zero-velocity 
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point over time; the Lagrangian coordinate R of this point, computed by Eq. (10) with Vgas = 0, 
decreases from 34.85 mm to about 33.84 mm, whereas Chanteret's model assumes this point is 
stationary, at Rx = 34.08 mm. However, the model-predicted displacement ofthe zero-velocity 

point is small, only 3.4% of the explosive thickness (R2 - R1); thus, it is apparent that the rigid
surface approximation is a good one, as further evidenced by the agreement of Chanteret's pre
dicted velocities in Table 1. 

Inner 
liner 
velocity, 
Irl 
(km/s) 

Outer 
liner 
ye1ocity, 
r 
(km/s) 

2 

Inner surface x x 
x x 

1.5 + + 
x 

Outer surface 
x 
+ 

1 

0.5 

0 
2 4 6 8 10 

Time, t (Ils) 

(a) Inner liner 

2 

x x x 

1.5 

x 

1 x 

0.5 x 

o L-____ -i ______ ~ ______ _L ______ _L ______ ~ 

2 4 6 

Time, t (Ils) 

(b) Outer liner 

8 10 

Figure 6. Comparison of liner velocities in a hollow cylindrical charge predicted by the present 
model (curves) with computations by Hennequin (1983) using the PISCES code (symbols) for 
R 1 = 40 mm, R 2 = 50 mm. 
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Inner 
liner 2 
velocity, 
Irl x 
(km/s) + 

1 x 
+ 

¥ 

0 
0 2 

3 

Outer 
liner 2 

velocity, 
r x 
(km/s) 

1 x 

x 

0 
0 2 

x 

+ 

x 

Inner x 
surface x 

4 

4 

x 

+ + 

6 

Time, t (lls) 

(a) Inner liner 

x 
x 

6 

Time, t (lls) 

+ 

Outer 
surface 

8 

8 

(b) Outer liner 

10 12 

10 12 

Figure 7. Comparison of liner velocities in a hollow cylindrical charge predicted by the present 
model (curves) with computations by Hennequin using the PISCES code (symbols) for R 1 = 
20 mm and R 2 = 50 mm. 

Conclusions 

A unified, general approach has been developed for modeling the explosive acceleration of 
metal liners in several configurations. Models derived using this approach provide not only the 
liner's final velocity but also its acceleration history. Application to the asymmetric sandwich 
yields the velocity and displacement history of each liner in closed form. Application to the hol
low cylinder allows the use of fewer assumptions than previous models. With some limitations, 
particularly in predicting the initial acceleration, the model agrees well with the results of two
dimensional hydrocode calculations. This approach may easily bt: extended to more complex sys
tems having more than two degrees of freedom, such as finite-length hollow cylinders. 
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Table 1. Comparison of model predictions with the TEMPS hydrocode computations of hollow 
cylindrical charges by Carleone and Flis (1981). 

Final inner-liner velocity, VI (km/s) 

RI (nun) 

29 
29 
29 
29 
29 
40 
40 
40 
40 
40 
40 
40 
40 

R2 (nun) hI (nun) TEMPS Chanteret 

50 8.0 1.230 1.25 
50 6.0 1.473 1.52 
50 2.5 2.478 2.58 
50 1.2 3.483 3.62 
50 0.8 4.084 4.15 
50 4.0 1.170 1.12 
50 2.5 1.626 1.57 
50 1.0 2.791 2.73 
50 0.6 3.536 3.44 
62.5 7.5 1.306 1.34 
62.5 2.8 2.424 2.49 
62.5 1.6 3.216 3.28 
62.5 1.0 3.916 3.92 

4 ~----~----~----r-----'-----' 

Inner- 3 
liner 
velocity, 
I; 11 (kmIs) 

2 

1 

x 

x 

~~x~-:-':x-~x- X 
X 

o L-____ L-____ L-___ ~ ___ ~ __ __ 

o 2 4 6 8 10 
Time, t (/-ls) 

Present model 

1.38 
1.64 
2.62 
3.50 
3.92 
1.25 
1.73 
2.88 
3.54 
1.46 
2.57 
3.27 
3.81 

Figure 9. Comparison of the inner-liner velocities in a hollow cylindrical charge, with RI = 29 
nun, R2 = 50 nun, and hI = 1.2 nun, predicted by the present model (curve) and computed using 
the TEMPS code (symbols). 
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