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INTRODUCTION 
 
 An analytical model of penetration in dry sand by sharp conical-nosed penetrators is 
proposed. The model predicates the existence in the sand of an oblique compaction shock 
attached to the nose of the penetrator, which is pointy: a wedge in plane flow or a cone in ax-
isymmetric flow. The penetrator’s deceleration is assumed too slow to affect the flow, so 
from its point of view the sand flows steadily around it. Sand, with its intergranular voids, is 
modeled by the P-α compaction model[1]; for a shock to form, the flow must be supersonic. 
 A compaction shock stands as an oblique wave attached to the penetrator apex. The 
spaces between the sand grains are assumed to be at least partially crushed out in this wave. 
For wedge penetrators, the sand is deflected within the shock by an angle equal to the wedge 
angle; that is, the sand flows parallel to the wedge surface (and with no further compaction). 
For cones, the shock deflects the sand by an angle smaller than the apex angle, and the sub-
sequent flow follows a curved path that asymptotically approaches the cone surface, with fur-
ther compaction. 
 
MODEL DEVELOPMENT 
 

 The compaction behavior of the sand is described by the P-α model, Fig. 1, given by 
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where α is a porosity parameter (with initial value α0 > 1), α ≡ ρs/ρ, in which ρ is the current 
density, ρs the fully compacted density, and Ps the pressure at complete compaction. Parame-
ters established for dry sand[2] are used: as pressure increases, the sand is gradually crushed  
from an initial density of 1.6 g/cm3 to 2.65 g/cm3 (α0 = 1.66) at a pressure Ps of 250 MPa. 

An analytical model of penetration by non-deforming pointy projectiles into dry 
sand is proposed. The model postulates that an oblique compaction wave in the 
sand is attached to the penetrator’s tip. Sand is modeled by the P-α porosity 
model up to full compaction, then is taken as incompressible. The sand’s com-
paction is considered the most important effect; strength and friction are ne-
glected. The model handles wedges, for which a closed-form solution is derived, 
and cones, which require numerical integration. For a given penetration veloc-
ity, the model predicts the shock angle and the pressure on the penetrator sur-
face. Hydrocode computations agree closely with the model. 

Distribution A: Approved for public release; distribution unlimited. Approval Confirmation #96 
ABW/PA-06-05-08-285. This work was funded in whole or in part by Department of the Air 
Force Contract #FA8651-05-C-0114.
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Fig. 3. Oblique compaction shock at a cone.
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Fig. 1. The P-α model of sand compaction. 

Once compaction is complete, the material is 
assumed in this model to behave incompressibly 
(but in the hydrocode computations, fully com-
pacted sand is modeled as quartz). 
 Suddenly compressing a porous material 
creates a compaction wave, behind which some 
or all of the porosity has been crushed out, 
depending on the loading. The wave is actually a 
shock, across which the material incurs sudden 
changes in velocity, density, and pressure, as 
described by the same equations as govern 
shocks. The only difference from the familiar 
shocks in non-porous materials is the 
compaction behavior reflected in the porous 
material’s equation of state. 
 A pointy body thrust rapidly into a porous material drives the material aside and com-
pacts it by a similar wave, which emanates at some angle from the penetrator apex. The angle 
depends on the apex angle, on whether the penetrator is a cone or wedge, and on the penetra-
tion velocity. 
 Relative to the penetrator, target material ap-
proaches at the penetration velocity U. This veloc-
ity is denoted V1 and the velocity behind the shock 
V2. The situation constitutes supersonic flow about 
an infinitely long wedge, as shown in Fig. 2. A par-
ticle approaching at velocity V1 abruptly changes in 
velocity to V2 in a direction parallel to the wedge’s 
surface; thus it is deflected by an angle equal to the 
wedge’s half-apex angle δ. The shock makes an 
angle σ with the flow direction. 
 The situation differs for a cone, Fig. 3. The an-
gle δ by which the shock deflects the streamline is 
smaller than the apex angle β, and the flow behind the shock is nonuniform, as the streamline 
curves to asymptotically approach the cone angle and the sand undergoes further compaction. 
 
Compaction Wave 
 
 The development and solution of the equations 
follows standard texts on gas dynamics (e.g., [3]). 
Changes in velocity, density, and pressure through 
the shock can be analyzed with the aid of Fig. 4, 
which shows velocity vectors before and behind the 
wave. Velocity components normal and transverse 
to the wave front are denoted by subscripts n and t. 
 The shock equations are: 
Continuity in n-direction: nn VV 2211 ρρ =  
Momentum in t-direction: tntn VVVV 222111 ρρ =  
Momentum in n-direction: 2

222
2

111 nn VPVP ρρ +=+  

Fig. 2. Oblique compaction shock at a wedge.
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In terms of velocity magnitudes and angles, these equations may be written as: 
  )sin(sin 2211 δσρσρ −= VV  (2) 
  )cos()sin(cossin 2

22
2

11 δσδσρσσρ −−= VV  (3) 
  )(sinsin 22

222
22

111 δσρσρ −+=+ VPVP  (4) 
to which is added the P-α model, applied to state 2 behind the shock, 
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Equations (2-5) relate σ, ρ2 (or α2), V2, P2, and δ. 
For a wedge, the deflection angle δ is known, so a 
solution may be obtained. For a cone, however, the 
shock angle σ is treated as given and δ as unknown. 
 Squaring Eq. (2) and dividing by Eq. (3) yields 
              )tan(tan 21 δσρσρ −=                    (6) 
Solving Eqs. (2) and (4) with P1 = 0 yields 
             ( )21

22
112 1sin ρρσρ −= VP               (7) 

For partial compaction in the shock (P2 < Ps), Eqs. 
(5-7) can be combined into 
     [ ] [ ] 0tantan)1(2tantan]1)1)(1[(tan 0000

22
0

3 =++−−++−− αδασαασδασ BB  (8) 
where B ≡ ρ1 V1

2/Ps
2. This equation, a cubic in tanσ, is awkward; further, it is limited to par-

tial compaction in the shock. It is easier to assume a value of σ, then solve for the other 
shock properties; this approach is sufficient to plot curves. By Eqs. (5) and (7), 

  ( )[ ]2
02

2

0

2 1sin1
1
1

αασ
α
α

−−=
−
− B  (9) 

which, given σ, may be solved for the compaction parameter α2,  
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Then ( )02
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112 1sin αασρ −= VP  (11) 
  [ ]σαασδ tan)(arctan 02−=  (12) 
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 The above development is based on partial compaction. As penetration velocity or shock 
angle increases, so does the shock pressure P2, while α2 decreases, eventually reaching a 
value of unity at complete compaction, for which P2 ≥ Ps, or, by Eq. (11), 
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for complete compaction in the shock, α2 = 1. Equations (11-13) still hold, but Eq. (6) re-
duces to 0tan)1(tantantan 00

2 =+−− δαασδσ  (15) 

which has two roots 
δ
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If the velocity is sufficient, the curve of σ vs. δ intersects this curve, then runs along it. 

shock front 
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Fig. 4. Velocity changes across 
the oblique compaction wave. 
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Fig. 5. Shock-deflection solutions for three velocities. 

 The relation between shock and 
deflection angles is shown in Fig. 5. 
The solid curve for complete 
compaction, Eq. (15), has for each δ 
two values of σ. For δ larger than 
about 14°, there is no solution, as  an 
attached shock is not possible; here, 
any shock must be detached and 
stand as a bow shock ahead of the 
penetrator. Points on the curve’s 
upper leg are not reachable; they 
correspond to the so-called “strong-
shock” solution, but only the lower 
“weak-shock” value can occur. 
 The other curves are partial-
compaction curves for three penetra-
tion velocities. Of these, the dashed 
curve corresponds to a critical 
velocity, as it intersects the com-
plete-compaction curve at its right end. This point is located by observing that Eq. (16) has a 
single value here, so the radicand must vanish, which yields the critical deflection δc, 

  
0

0

2
1tan

α
αδ −

=c  (17) 

Substituting this into Eq. (16) yields 
  0tan ασ =c  (18) 
For α0 = 1.655, these formulas give δc = 14.3°, σc = 52.1°, which is the rightmost point of 
the complete-compaction curve. Thus, for wedges blunter than 14.3° half-angle, an attached 
shock cannot exist, no matter how high the velocity. 
 The penetration velocity whose partial-compaction σ-δ curve intersects the complete-
compaction curve at this point corresponds to P2 = Ps, α2 = 1, and σ = σc, for which Eq. (11) 

gives the velocity 
1
1
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0
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+
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α
α

ρ
s
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P
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At velocities above this, complete compaction occurs in the shock for deflection angles 
greater than a certain value. For the P-α model, this critical velocity is about 2600 ft/s. 
 The dash-dot curve in Fig. 5 is the partial-compaction curve for a velocity, 2000 ft/s, be-
low this critical value. It intersects the complete-compaction curve on its unreachable upper 
leg. At such sub-critical velocities, complete compaction cannot occur in the shock. Note that 
this curve’s rightmost point lies left of the rightmost point of the full-compaction curve; for 
deflection angles greater than this point’s, an attached shock is not possible, and any shock 
must be detached. The maximum deflection angle is given by Eq. (8) with ∂δ/∂σ = 0, or equi-
valently by ∂(tanδ)/∂(tanσ) = 0, which yields the condition 
 [ ] 0tan)1(2tan2]1)1)(1[(tantan3 max000max

2
0maxmax

2 =+−−−+−− δααασαδσ BB  
which in conjunction with Eq. (8) locates the point of maximum deflection for a given veloc-
ity. Eliminating tan δmax from these two equations yields 
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The maximum deflection angle for an attached shock is then given by 
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For a penetration velocity of 2000 ft/s, this angle is about 11°. 
 The dotted line in Fig. 5 is the partial-compaction curve for a velocity, 4000 ft/s, above 
that given by Eq. (19). It intersects the complete-compaction curve along its lower leg, at a 
deflection angle of about 11°. For deflection angles smaller than this, only partial compaction 
occurs in the shock; for larger deflections, complete compaction occurs there. 
 Each partial-compaction curve in Fig. 5 meets the vertical axis at a positive value, the 
minimum possible shock angle, which corresponds to an infinitesimal deflection or a shock 
of vanishing strength traveling at the sound speed ρddPc /0 = . Differentiating Eq. (1) and 
evaluating at α = α0 yields c0

2 = α0Ps /[2ρ0 (α0 – 1)]. For α0 = 1.66, Ps = 250 MPa, ρ0 = 1.6 
g/cm3, the sound speed is 443 m/s. The minimum shock angle is the Mach angle, sin–1(c0/U). 
 This model requires an attached shock, whose existence depends on the velocity and de-
flection angle. At velocities below the sound speed c0, no shock is possible. At velocities 
above the critical 
value Uc of Eq. (19), 
the shock is attached 
for deflection angles 
up to δc of Eq. (17). 
Between c0 and Uc, 
the shock is attached 
for deflection angles 
up to δmax given by 
Eq. (21). 
 Curves for these 
equations divide the 
plane of velocity vs. 
deflection angle in 
Fig. 6 and define the 
limits of applicability 
of the attached-shock 
model. The model 
holds at all points 
above the dashed 
curve, which corre-
sponds to Eqs. (20-
21); below, the shock 
is detached or non-
existent (in the sub-
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Fig. 7. Computed results for a penetration velocity of 3,000 ft/s. 

sonic regime at the bottom). Above the solid curve of Eqs. (14) and (16), the shock com-
pletely compacts the sand. Between these curves, the shock only partially compacts the sand. 
 

Conical Flow Behind the Shock 
 
 A conical penetrator differs from a wedge in that the flow is axisymmetric, and behind 
the shock, as in Fig. 3, each streamline curves as it approaches the cone. This flow is deter-
mined from the solution of Taylor and Maccoll[4] for supersonic flow about a cone. The 
same dynamical equations are used here, but the P-α model replaces the ideal gas law. 
 The solution is based on the observation that, for flow about a cone of infinite extent, the 
problem involves no length dimension; the solution therefore depends only on angles cen-
tered on the cone’s apex. Using a spherical coordinate system centered here reduces the 
equations for the flow behind the shock to the ordinary differential equations, 

 0cot2 =⎥⎦
⎤

⎢⎣
⎡ −++

θ
α

αθ
θ θθ

θ d
dV

d
dVVVr ; θθ ddVV r= ; ⎥⎦
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⎢⎣
⎡ +−=

θθα
ρ

θ
θ

θ d
dV

V
d
dVV

d
dP r

r
s  (22) 

where Vr and Vθ are velocity components in the radial and angular directions (measured from 
the apex). The boundary conditions are the states behind the shock given by the oblique-
shock relations, and Vθ = 0 at the cone’s surface. 
 The solution scheme is inverse. For a given U, a value of shock angle σ is assumed. The 
conditions behind the shock are given by Eqs. (10-13). Velocity components there are given 
by )sin(2 δσ

σθθ −=
=

VV ; )cos(2 δσ
σθ

−=
=

VVr . Eqs. (22) are then numerically integrated 
from the shock to the cone for decreasing θ, until Vθ = 0, which satisfies the boundary condi-
tion at the surface, where the value of θ is the apex angle β that yields this solution. At low 
velocities, the sand is only partially compacted, but at increasing velocities, complete com-
paction occurs first near the cone surface, then encompasses an increasing angle, until com-
plete compaction occurs in the shock. 
 Calculated results at 3000 ft/s are shown in Fig. 7, which plots the relationships among 
the various angles. 
The dark-blue curve 
relates shock angle 
to deflection angle 
at full compaction. 
The green curve in-
tersecting the verti-
cal axis at the Mach 
angle of 29.1° re-
lates the shock and 
deflection angles; it 
starts to overwrite 
the blue curve at a 
shock angle of 
43.4°, where full 
compaction in the 
shock begins. Its 
right end corre-
sponds to the 
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Fig. 8. CTH computation of a 20° 
cone penetrating sand at 3,000 ft/s. 

o36~

 

maximum deflection for an attached shock, 14.3°, at a shock angle of 52.2°. The red curve 
relates shock angle to cone apex angle; because the maximum shock angle is 52.2° (upper 
dashed line), the uppermost point reachable on this curve is at an apex angle of 27.2°. The 
light-blue curve locates the boundary between partially and fully compacted sand; for apex 
angles less than about 22°, no sand is fully compacted, but as β increases, this boundary ex-
pands outward from the cone surface until full compaction occurs in the shock, where it in-
tersects the shock-angle curve (lower dashed line) at 
about a 24° apex. 
 
COMPARISON WITH HYDROCODE 
 
 To compare with the model, the CTH hydro-
code[5] was run for cones penetrating dry sand 
modeled by the P-α model. Figure 8 shows the re-
sult for a 20° cone at 3,000 ft/s. The plot, of color 
contours of density, reveals an oblique wave (in 
green) attached to the apex of the (red) cone. The 
model predicts a shock angle of about 36.1°, in good 
agreement with the angle in this plot (35.5°). 
 Computations were run for apex angles of 10° 
to 30° and velocities of 3,000 and 4,000 ft/s. Values 
of shock angle σ measured from the CTH plots are 
compared with model predictions in Table 1; agree-
ment is within a fraction of a degree in all but one 
case. For the 30° cone, the model predicts detached 
shocks at both velocities, and the CTH plots, as in 
Fig. 9, clearly show curved waves. The CTH values 
are shown on the model plots in Fig. 10. 
 

 
CONCLUSIONS 
 
 An analytical model for pointy wedges and cones penetrating dry sand at supersonic ve-
locities has been developed. The model predicts the pressure acting on the penetrator. 
Agreement with hydrocode computations is excellent. 

 

Table 1. Comparison of analytical model and 
CTH computations for conical penetrators. 

Half-  Shock angle, σ  
apex U = 3,000 ft/s U = 4,000 ft/s 

angle, β Model CTH Model CTH 
10° 30.2° 30.5° 22.9° 22.4° 
15° 32.3° 32.8° 26.1° 26.6° 
20° 36.1° 35.5° 33.8° 34.3° 
25° 45.0° 45.0° 45.0° 43.3° 
30° detached curved detached curved  

Fig. 9. CTH computation of a 30°-half-angle 
cone penetrating dry sand at 3,000 ft/s. 
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Fig. 10. Model solutions (curves) and CTH predictions (symbols) of shock angle for penetration 

at 3,000 ft/s (top) and 4,000 ft/s (bottom). 
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