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I. Introduction

When a metal liner is driven to a velocity V by an explosive charge,
it is often important to know not only the magnitude of its velocity
but also the direction in which each liner element moves. This direc-
tion is conveniently defined by the angle 6 between the velocity vector
of the liner element and the perpendicular to the initial liner surface.
We shall call 6 the liner projection angle. For a fragmentation charge
(or exploding bomb), the projection angle will determine the final angu-
lar distribution of the scattered fragments. For explosive cladding or
shaped-charge liner collapse, it will determine the collapse angle B
of the given charge. The specified qualities of either the cladding
bond or the jet, crucially depend on this collapse angle.

A formula for determining the projection angle 6 from the velocity
of the liner V and the velocity U by which the detonation wave front
sweeps past the liner surface was first proposed by Taylor [1]:

sins = V/2U (1)

This formula, which has been the most extensively used one to
date (see References 2-8), is, however, accurate only under steady state
conditions where the detonation wave sweeps past identical cross sec-
tions of the explosive-liner geometry. For non-steady cases, the Taylor
formula is not applicable since the existence of either a gradient,
-• of the velocity V along the liner or a gradient, L, of the typical

acceleration duration r(Z denotes the length tangential. to the liner
surface) may very significantly affect the angle 6, sometimes causing
very big deviations between the Taylor predictions and experimental
measurements.

A more accurate formula for the liner projection angle is there-
fore needed. It will lead to a more accurate description and under-

standing of processes such as the collapse of the conventional shaped
charge or the hemispherical liners and the formation of the self-forg-
ing fragment.

Recently, Randers-Pehrson [9] derived a non-steady liner projection
angle formula by empirically fitting a formula to the numerically cal-
culated results.

In the present paper an analytically derived formula is obtained.
It is based on the assumptions that (1) the detonation pressure acts
normally on the liner, and (2) the angle (9-6), which will be defined
later, is small.

We found that for the small angle assumption to be valid, the

initial radius of curvature must be small in comparison with the dis-
tance traveled by the liner during acceleration. A third assumption is
that the internal forces in the liner metal can be neglected. The new
formula was tested against both numerical calculations and experimental
data and was found to predict the projection angle 6 more accurately

"than the steady Taylor formula.

9
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In this report we address only the equation governing the angle 6and the velocity parameters V0 and T. No attempt is made here to
determine values of V0 and T as functions of explosive and liner geometry
and properties. It is obvious that values of V0 and T are needed for
the eventual application of this equation. A simple method in deter-mining V0 and T will be the objective of future research. For thepresent purpose of ascertaining the accuracy of the unsteady Taylor
angle equation, we shall use values of V0 and T determined either by
two-dimensional computer code, or by expelimental measurement.

10



II. Derivation of Basic Equations

We shall first derive the differential equations describing the
liner's motion. We shall limit ourselves to liners with very large
initial radii of curvature. In other words, the liner has an almost
straight formation line. The liner could either be an axisynimetric
shell, or a "plane strain" plate. The explosion wave front. is assumed
to be cylindrically symmetric for the shell case with its axis of sym-
metry coinciding with that of the liner's. We denote by k the length
coordinate along the liner and by U the velocity by which the detona-
tion wave front sweeps past the liner surface along the direction of
the liner surface.

The first differential equation deals with the increase of liner
velocity with time. Let V and 6 be the magnitude and direction of the
liner velocity at the point 2 on the liner at a specific time, t. We
make the assumption that the gas pressure always acts perpendicular
to the liner surface. When a liner segment elongates or shrinks as it
is pushed or pulled by its neighboring segments, a force component in
the liner direction may also appear. We assume that this force can be
neglected during the acceleration time. We denote by 9 the angle be-
tween the original liner formation line direction and the current for-
mation line direction, at Z. Then, we can see from Fig. 1 that the
additional velocity vector dl, at a given position Z, induced by the
force acting perpendicularly to the liner during the time dt, adds to
the current velocity vector ý(t) to form the new velocity vector
ý(t+dt). As a result the velocity increases in magnitude by the
amount dV = dIVI = IdtI cos(G-6) where Id•I is the magnitude of the
above mentioned additional velocity vector. At the same time, the
tangential velocity component IdaI sin(@-6) causes the velocity direc-
tion to change by the ani~je dU. We can relate the angle d6 to this
component by the equation:

IdvI sin(0-6) = V'd6.

Substituting d@I = dV/cos(0-6) we get the scalar equation for
the velocity magnitude:

dV tan(@-6) - V.d6. (2)

Dividing by dt and denoting the differentiation with respect to the
time by a dot above the symbol we finally obtain

Vi6iII- •"tan(9-6). (3)

The next equation describes the influence of the existence of
a velocity gradient along the liner. We make the assumption that a
liner will not elongate while being accelerated, or that its elonga-
tion may be neglected.

We are interested in calculating the rate-of-change of liner

slope L. Referring to Fig. 2, we note that during the time dt,

at1



Initial Liner Contour U

Normal to Initial
Liner Face

Current Liner
Contour (FormationI' Line)

Parallel to
normal at 2i

Normal to current Liner
t \- Contour att

S(t + dt)

dd / , /d'• cos (0 - 6)

(8-6- d6 )

Figure 1. Liner acceleration diagranL shov•ing how the additional
velocity dV coutributes to the increase in magnitude
_nd change in the direction of the current velocitv,

.V.
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point A will move the distance V(t)dt to point C in a direction making
the angle 0(t) - 8(t) with the normal to the current liner surface
at point A. Point B will move at the same time the distance

V + Lj- d • dt to point D. The angle at A (see Fig. 2) between the

initial and current liner direction is equal by definition to 0(t).

The angle dO between CD and AB is determined by the components
of V dt and (V + dV)dt normal to the current liner at 9 thus:

dO * tan(dG) M CF-DE - [V- (V+dV)] cos(9-_ dt. (4)d di dl

At the limit of small dt this yields:

6 - - V' cos(@-6) (5)

where the prime denotes differentiation with respect to t, and dot
with respect to time.

14



III. Integration of Basic Equations

Eqs. (3) and (5) represent two equations governing the three
quantities V, 0, and 6. Assuming that the spatial and temporal dis-
tribution of V for a given problem is known, we can solve for 9 and 6.
Under the approximation tan(O-6) 0 9-6. Eq. (3) now becomes

+ .. (6)

Eq. (6) is a first order differential equation which for the
initial conditions 9=6=V-O at t < T has the general solution:

6 jI QX dt i- 0 f1 V6 dt (7)=V IT Vat= -V IT

where T is the instant when the liner begins to accelerate. From
Eq. (5) we obtain under the above approximation:

9 I V'cos(O-6)dt I - V'dt. (8a)

When we substitute 9 from Eq. (5), the second term of Eq. (7) becomes

1 f Vedt = I V VV' cos(9-6)dt ..-1 VV'dt. (8b)V fT T VI

We, therefore, obtain the general solution for 6

6= - V'dt + -1 ft (V2 )'dt. (9)
IT 2VT

15
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IV. Application to Exponential Acceleration

In order to apply Eq. (9) to a practical problem, we shall assume
for V the exponential form:

V(1,t) - Vo (t) 1i - exp (10)

when V0 ,T, and T are functions of X only. Though this form may not
fit perfectly for all cases, it is reasonably accurate for cases we
have studied and easily integrable for the calculation of 6 given by
Eq. (9). The corresponding acceleration is

av V0  F/t-Ta -- Texp

The quantity T(k) is the arrival time of the detonation wave at the
point k on the liner, T is the characteristic acceleration time of
this point and VO(£) is the final asymptotic velocity reached by the
liner. The time t-0 is taken when the detonation wave reaches a con-
venient point on the metal say Z-0.

To facilitate the integration, we interchange the order of time
integration and differentiation with respect to Z.

6- -- V dt +1- V'dt. (11)at 2 T 2V 31 T

(the differentiation with respect to T vanishes since V 0 at t - T).

For the V function given by Eq. (10),

V dt - V0 (t-T) - TV (12)
T0

V2 dt - V0 [V0 (t-T) - TV] - 1 V213)

Substituting Eq. (12) and (13) into Eq. (11) yields:

i --|i--~~ ~~ [.1v(tT 1 T0v2°
6 - 2[T V-V (t-T) -i-i _L IV0 'TV-V (t-T)] + 1V2 (14)

atieL 0 2

To compare this equation with experimental results, we shall be
interested in the value 6 will obtain as t - c. At this limitjV be-
comes equal to VO, V' becomes equal to V0 ' and the expression for 6
becomes:

16
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VQ2 - '2 T'V (15)

2 - 2 TV 4 0'15

Let U be the detonation wave sweep speed, then T' is equal to
I/U for a detonation on the axis of symmetry and Eq. (15) becomes:

V0  1 1 I'

TO2U 2 tV'0 + Z VO" (16)

The first term is, for a small angle 6, identical to the Taylor
formula, Eq. (l),and the other two are the correction terms.

17



V. Constant Acceleration Equation

In deriving Eq. (16) we assumed the exponential form for the
velocity time dependence. Even though this form very well simulates
the experimental measurements it is not the only form one can choose
to fit the experimental data. When solving Eq. (9) with a constant
acceleration assumption at the period of time T < t <(T + -c) i.e.,

V - VoI\t-T) (17)

we find

V0T' 1 1 V (18)

2 6 cV0 6 c 0(8

and for the form:

1/2

V =V 0 ( )t-T (19)

we obtain

I V0T' T V + T V. (20)
2 6 SR 0 12 SR 0

It can easily be seen that the TSR parameter of Eq. (19) ex-
actly corresponds to 3T, when T is the corresponding parameter in
the exponential acceleration (Eq. 10).

Using an acceleration form such as Eq. (17) or Eq. (19) may be
more convenient in obtaining a closed form solution in more compli-
cated cases, e.g., when the effect of the liner curvature on the
angle 6 cannot be neglected.

18
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VI. Comparison with Previous Work and Two-Dimensional Code Calculations

Let us now compare Eq. (16) with the equation obtained empiri-
cally by Randers-Pehrson [9] using Two-D code calculations and
experiment. The formula given in Ref. 9 is as follows:

V 1 , 1 t,)2
=2t 2 - -TV)- " (21)

(Note that Eq. (21) agrees with Eq. (16) in the first two terms).

To perform this comparison we need to know V0 and V0 ',T and T'.
There exists some experimental data for V0 and Vol from exploding
cylinder tests. Experimental data for T (excepc in special steady
state cases) seems lacking, however. We, therefore, performed Two-D
code simulations to calculate Vo,V0 ',t,T' and 6 for two specific
geometries. Our general approach is to use output from a Two-D code
of V0 and T at a number of £ locations to numerically calculate V0'
and T'. Then substituting these values of V0 and VO', T and T'
into Eq. (16), we obtain a value for 6 which we shall denote 6F
(F - formula). The value of 6 F is then compared with the Two-D code
value of 6 denoted 6 c(c-code). Wherever experimental measurements of
6 are available for a specific charge we shall denote them 6ex. We
expect to find a good agreement between 6c and 6 ex when using a
reliable Two-D code. Therefore, a check against experimental data is,
in fact, a check of the Two-D code validating its use for checking
Eq. (16). For completeness, these values are also substituted into
Eq. (21) and the result denoted 6RP

The two dimensional code we found most convenient to apply to
this purpose is a Lagrangian code named TEMPS in which the explosive
is treated by a two-dimensional finite-difference grid similar to
HEMP, TOODY and other Two-D Lagrangian codes. The liner in TEMPS,
however, is described as an array of mass points having tensile and
bending forces between each two neighboring points. The liner is
thus being treated as one-dimensional. This not only saves compu-
tation time but also facilitates the data reduction from the code out-
put.

A. Conical Shaped Charge

The first configuration studied is the 81.3 mm diameter, 420,
conical shaped charge depicted in Fig. 3. In this example we choose
£-0 at the cone liner apex and £ is the distance from this point along

the formation line. The charge is initiated by plane detonation at
the rear of the explosive.

From the TEMPS code calculations, the velocity history for each
liner mass-point position Z is recorded and plotted. A typical plot
is shown in Fig. 4. The asymptotic final velocity reached is defined
as Vo(Z) for each mass point. These are tabulated in Table 1 for
this case. This final velocity is then plotted as a function of Z
as shown in Fig. 5a. This curve is then numerically differentiated

19
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using the simple difference formula AV0 /Ak to obtain V0 '(Z) which is
also contained in Table 1.

Next we must estimate the value of T for each mass point. This
was obtained by fitting Eq. (10) to the TEMPS velocity data. The
arrival time T used in Eq. (10) is the theoretical arrival time at the
explosive metal interface and obtained by dividing the distance be-
tween the plane of initiation and the point X by the detonation
velocity UD. As is indicated in Fig. 4, the wave arrival time pre-
dicted by the TEMPS code does not coincide with the chlculated theo-
retical arrival time. This inaccuracy in the code simulction Is
caused by the code's smearing of the detonation front in the finite-
difference calculation scheme.. Therefore, in performing the fit for T,
we did not choose T as the value of t when V - Vo(l-e-1) = 0.632 VO,
as is indicated by Eq. (10). This value of T would be inaccurate
since it is close to and heavily influenced by the code's calculation
of wave arrival time. We found it more reliable to fit the curves
closely in the region V > .86 V0 . The values of T obtained from this
procedure are given in Table 1. These values of T are also plotted
as a function of Z in Fig. 5b. A line is fitted through the points
and T' calculated by simple numerical differentiation. The values
are shown in Table 1. We see that for this charge T is approximately
constant and therefore T' is a very small quantity.

These values are then substituted into Eq. (16) and Eq. (21) as
well as Taylor's relation and compared to the code calculations. The
quantity 6 c is the angle of the velocity vector as given by TEMPS
when the liner reaches a final velocity V0 . The detailed data are
given in Table 1 and plotted graphically in Fig. 6. We see that the
Eq. (16) gives a significant improvement over the Taylor relation
and agrees well with the TEMPS code. Note that since the last term in
both Eqs. (16) and (21) is small, the difference between Eq. (16j and
Eq. (21) is small for this example.

B. Explcding Cylinder

The second configuration studied is an exploding cylinder which
is identical co the example used by Randers-Pehrson [9,10]. It con-
sists of a steel pipe segment 101.6 mm in length and a diameter of
50.8 mm filled with OCTOL as shown in Fig. 7. For this example,
direct experimental measurements of 6 and V0 are presented in Ref. 10.
In these experiments, the expanding cylindrical pipe breaks into frag-
ments. The speed and direction of motion of the fragments are measured
by means of x-ray shadowgraphs taken at several predefined times.
Similar experiments were also conducted in References 11 and 12.

To provide a complete verification of Eq. (16), however, the
quantity T is also needed. Since no acceleration data was measured
in these experiments, we cannot provide an experimental value for T
and hence a full experimental verification of Eq. (16) at this point
in time is not possible. In fact, as mentioned in the previous sec-
tion, measurements of metal motion during acceleration have bean re-
ported for only a very special steady state case (see [13,14) in

24
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Figure 6. Comparison of the projection angle 8 from formulas
and two-dimensional calculations.
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Figure 7. Exploding cylinder charge used for comparisons.
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which Vol and T' are identically zero. Therefore, in our present
comparison, TEMPS code calculations will again be used to supply the
quantities T and T' (as well as V0 and Vol). The experimental data
will thus be used to verify the final values for V0 and 6 given by
the code calculations as well as the 6 given by Eqs. (16) and (21).

The results of the TEMPS calculations for V0 and 6 are compared
to the experimental data in Figs. 8 and 9. Also shown ir, these fig-
ures are the HEMP simulation results presented by Randers-Pehrson in
[9]. Both TEMPS and HEMP results are within the spread of the expezi-
mental data.

The procedure to determine T, T', V and V ' from the TEMPS data
was described in the previous section. R velocity vs. time plot for
a typical mass point is shown in Fig. 10. A plot of T vs. £ is given
in Fig. 11. The values of all the necessary quantities are listed in
Table 2. These values were then substituted into Eqs. k16)and (21)
to compute 6. and 6 . Fig. 12 is a comparison of 6F, 6Rp' the
Taylor formula and &e TEMPS result 6 c. We see that considerable
improvement in the estimation of the angle 6 is achieved. Again, we
note that the third term in both Eqs. (16) and (21) is small, there-
fore, 6 F and 6Rp do not differ significantly.
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VII. Summary and Conclusions

In this report a formula for the explosive-metal Taylor angle 6
in the unsteady case was derived from basic physical principles under
the assumptions

(a) the explosive T ressure always acts normal
to the current liner surface.

(b) total angular motion of the metal is small
(i.e., 9-6 is small)

(c) forces in the liner are small during the
acceleration time.

Also, the present case is restricted to liners whose meridional
curvature is small. Under the assumption of an exponential decaying
acceleration in time of the metal, this formula is given by

V O 0 1 , 1 + I I'

2U 2 0 4 0

where V0 is the final velocity, T the characteristic acceleration time,
and U the detonation sweep speed; the prime indicates spatial dif-
ferentiation along the liner. We point out that the first term repre-
sents the steady-state Taylor result. The remaining two terms repre-
sent the unsteady effects. Note that the first two terms are
identical to the semi-empirical formula given in [9].

for the collapse of a conical shaped charge and the explosion of
a metal cylinder we have found this formula to yield accurate results
when compared to Two-D hydrocode calculations and to provide a signifi-
cant improvement over the Taylor relation. The experimental data
available also shows that the formula is accurate.

More recently, liners with large amounts of curvature in the
meridional direction (formation line) such as hemispheres have shown
promise as candidates for certain warhead applications. For such
cases, the present formula is not applicable, It is therefore suggested
that the current analysis be extended to include these more complex
geometries.
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